Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical analysis of a singularly perturbed 4th order problem with a shift term (2309.12105v1)

Published 21 Sep 2023 in math.NA and cs.NA

Abstract: We consider a one-dimensional singularly perturbed 4th order problem with the additional feature of a shift term. An expansion into a smooth term, boundary layers and an inner layer yields a formal solution decomposition, and together with a stability result we have estimates for the subsequent numerical analysis. With classical layer adapted meshes we present a numerical method, that achieves supercloseness and optimal convergence orders in the associated energy norm. We also consider coarser meshes in view of the weak layers. Some numerical examples conclude the paper and support the theory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. Numerical treatment for the class of time dependent singularly perturbed parabolic problems with general shift arguments. Differ. Equ. Dyn. Syst., 25(2):327–346, 2017.
  2. A balanced norm error estimation for the time-dependent reaction-diffusion problem with shift in space. Appl. Math. Comp., (437):127507, 2023. https://doi.org/10.1016/j.amc.2022.127507.
  3. Numerical analysis of a singularly perturbed convection diffusion problem with shift in space. Appl. Numer. Math., (186):129–142, 2023. https://doi.org/10.1016/j.apnum.2023.01.003.
  4. P.P. Chakravarthy and K. Kumar. An adaptive mesh method for time dependent singularly perturbed differential-difference equations. Nonlinear Engineering, 8:328–339, 2019.
  5. S. Franz. Superconvergence using pointwise interpolation in convection-diffusion problems. Appl. Numer. Math., 76:132–144, 2014. corrected version: https://arxiv.org/abs/1304.7443.
  6. Higher order numerical approximation for time dependent singularly perturbed differential-difference convection-diffusion equations. Numer. Methods Partial Differential Equations, 34:357–380, 2018.
  7. D. Kumar and M.K. Kadalbajoo. A parameter-uniform numerical method for time-dependent singularly perturbed differential-difference equations. Appl. Math. Model., 35:2805–2819, 2011.
  8. D. Kumar and P. Kumari. Parameter-uniform numerical treatment of singularly perturbed initial-boundary value problems with large delay. Appl. Numer. Math., 153:412–429, 2020.
  9. N. Madden and M. Stynes. A weighted and balanced FEM for singularly perturbed reaction-diffusion problems. Calcolo, 58(2):Paper No. 28, 16, 2021.
  10. M. A. Naimark. Linear differential operators. Part I: Elementary theory of linear differential operators. Frederick Ungar Publishing Co., New York, 1967.
  11. S. Nicaise and Chr. Xenophontos. Robust approximation of singularly perturbed delay differential equations by the h⁢pℎ𝑝hpitalic_h italic_p finite element method. Comput. Methods Appl. Math., 13(1):21–37, 2013.
  12. P. Rai and K. K. Sharma. Singularly perturbed convection-diffusion turning point problem with shifts. In Mathematical analysis and its applications, volume 143 of Springer Proc. Math. Stat., pages 381–391. Springer, New Delhi, 2015.
  13. H.-G. Roos and T. Linß. Sufficient conditions for uniform convergence on layer-adapted grids. Computing, 63:27–45, 1999.
  14. Robust numerical methods for singularly perturbed differential equations, volume 24 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2008.
  15. M. Stynes and L. Tobiska. The SDFEM for a convection-diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy. SIAM J. Numer. Anal., 41(5):1620–1642, 2003.
  16. V. Subburayan and N. Ramanujam. Asymptotic initial value technique for singularly perturbed convection-diffusion delay problems with boundary and weak interior layers. Appl. Math. Lett., 25(12):2272–2278, 2012.
  17. V. Subburayan and N. Ramanujam. An initial value technique for singularly perturbed convection-diffusion problems with a negative shift. J. Optim. Theory Appl., 158(1):234–250, 2013.

Summary

We haven't generated a summary for this paper yet.