Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

S-BDT: Distributed Differentially Private Boosted Decision Trees (2309.12041v3)

Published 21 Sep 2023 in cs.CR and cs.LG

Abstract: We introduce S-BDT: a novel $(\varepsilon,\delta)$-differentially private distributed gradient boosted decision tree (GBDT) learner that improves the protection of single training data points (privacy) while achieving meaningful learning goals, such as accuracy or regression error (utility). S-BDT uses less noise by relying on non-spherical multivariate Gaussian noise, for which we show tight subsampling bounds for privacy amplification and incorporate that into a R\'enyi filter for individual privacy accounting. We experimentally reach the same utility while saving $50\%$ in terms of epsilon for $\varepsilon \le 0.5$ on the Abalone regression dataset (dataset size $\approx 4K$), saving $30\%$ in terms of epsilon for $\varepsilon \le 0.08$ for the Adult classification dataset (dataset size $\approx 50K$), and saving $30\%$ in terms of epsilon for $\varepsilon\leq0.03$ for the Spambase classification dataset (dataset size $\approx 5K$). Moreover, we show that for situations where a GBDT is learning a stream of data that originates from different subpopulations (non-IID), S-BDT improves the saving of epsilon even further.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com