Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Approximation Algorithms for Non-monotone $k$-Submodular Maximization under a Knapsack Constraint (2309.12025v1)

Published 21 Sep 2023 in cs.DS, cs.CC, cs.LG, and math.CO

Abstract: The problem of non-monotone $k$-submodular maximization under a knapsack constraint ($\kSMK$) over the ground set size $n$ has been raised in many applications in machine learning, such as data summarization, information propagation, etc. However, existing algorithms for the problem are facing questioning of how to overcome the non-monotone case and how to fast return a good solution in case of the big size of data. This paper introduces two deterministic approximation algorithms for the problem that competitively improve the query complexity of existing algorithms. Our first algorithm, $\LAA$, returns an approximation ratio of $1/19$ within $O(nk)$ query complexity. The second one, $\RLA$, improves the approximation ratio to $1/5-\epsilon$ in $O(nk)$ queries, where $\epsilon$ is an input parameter. Our algorithms are the first ones that provide constant approximation ratios within only $O(nk)$ query complexity for the non-monotone objective. They, therefore, need fewer the number of queries than state-of-the-the-art ones by a factor of $\Omega(\log n)$. Besides the theoretical analysis, we have evaluated our proposed ones with several experiments in some instances: Influence Maximization and Sensor Placement for the problem. The results confirm that our algorithms ensure theoretical quality as the cutting-edge techniques and significantly reduce the number of queries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. L. Lovász, “Submodular functions and convexity,” in Mathematical Programming The State of the Art, XIth International Symposium on Mathematical Programming, Bonn, Germany, August 23-27, 1982, A. Bachem, B. Korte, and M. Grötschel, Eds.   Springer, 1982, pp. 235–257.
  2. A. P. Singh, A. Guillory, and J. A. Bilmes, “On bisubmodular maximization,” in In Proc. of the International Conference on Artificial Intelligence and Statistics (AISTATS), 2012, pp. 1055–1063.
  3. J. Ward and S. Zivný, “Maximizing bisubmodular and k-submodular functions,” in In Proc. of Symposium on Discrete Algorithms (SODA), 2014, pp. 1468–1481.
  4. Y. Zhang, M. Li, D. Yang, and G. Xue, “A budget feasible mechanism for k-topic influence maximization in social networks,” in In Proc. of IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1–6.
  5. N. Ohsaka and Y. Yoshida, “Monotone k-submodular function maximization with size constraints,” in In Proc. of Annual Conference on Neural Information Processing Systems (NIPS), 2015, pp. 694–702.
  6. A. Rafiey and Y. Yoshida, “Fast and private submodular and k-submodular functions maximization with matroid constraints,” in In Proc. of the International Conference on Machine Learning (ICML), 2020, pp. 7887–7897.
  7. C. Qian, J. Shi, K. Tang, and Z. Zhou, “Constrained monotone k-submodular function maximization using multiobjective evolutionary algorithms with theoretical guarantee,” IEEE Trans. Evol. Comput., vol. 22, no. 4, pp. 595–608, 2018.
  8. L. Nguyen and M. Thai, “Streaming k-submodular maximization under noise subject to size constraint,” in In Proc. of the International Conference on Machine Learning (ICML), 2020, pp. 7338–7347.
  9. Z. Wang, E. Chen, Q. Liu, Y. Yang, Y. Ge, and B. Chang, “Maximizing the coverage of information propagation in social networks,” in Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, Q. Yang and M. J. Wooldridge, Eds.   AAAI Press, 2015, pp. 2104–2110.
  10. C. V. Pham, D. T. Ha, H. X. Hoang, and T. D. Tran, “Fast streaming algorithms for k𝑘kitalic_k-submodular maximization under a knapsack constraint,” in The 9th IEEE International Conference on Data Science and Advanced Analytics, 2022.
  11. D. Kempe, J. M. Kleinberg, and É. Tardos, “Maximizing the spread of influence through a social network,” in In Proc. of the International Conference on Knowledge Discovery and Data Mining (KDD), 2003, pp. 137–146.
  12. “On maximizing a monotone k-submodular function under a knapsack constraint,” Operations Research Letters, vol. 50, no. 1, pp. 28–31, 2022.
  13. B. Wang and H. Zhou, “Multilinear extension of k-submodular functions,” CoRR, vol. abs/2107.07103, 2021. [Online]. Available: https://arxiv.org/abs/2107.07103
  14. U. Feige, V. S. Mirrokni, and J. Vondrák, “Maximizing non-monotone submodular functions,” SIAM J. Comput., vol. 40, no. 4, pp. 1133–1153, 2011.
  15. N. Buchbinder, M. Feldman, and R. Schwartz, “Comparing apples and oranges: Query tradeoff in submodular maximization,” in Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, P. Indyk, Ed.   SIAM, 2015, pp. 1149–1168.
  16. B. Mirzasoleiman, A. Badanidiyuru, and A. Karbasi, “Fast constrained submodular maximization: Personalized data summarization,” in In Proc. of the International Conference on Machine Learning (ICML), vol. 48, 2016, pp. 1358–1367.
  17. C. V. Pham, Q. C. Vu, D. K. Ha, T. T. Nguyen, and N. D. Le, “Maximizing k-submodular functions under budget constraint: applications and streaming algorithms,” J. Comb. Optim., vol. 44, no. 1, pp. 723–751, 2022.
  18. S. Iwata, S. Tanigawa, and Y. Yoshida, “Improved approximation algorithms for k-submodular function maximization,” in Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, R. Krauthgamer, Ed.   SIAM, 2016, pp. 404–413.
  19. H. Oshima, “Derandomization for k-submodular maximization,” in In Proc. of International Workshop Combinatorial Algorithms (IWOCA), L. Brankovic, J. Ryan, and W. F. Smyth, Eds., 2017, pp. 88–99.
  20. S. Sakaue, “On maximizing a monotone k-submodular function subject to a matroid constraint,” Discret. Optim., vol. 23, pp. 105–113, 2017.
  21. A. Rafiey and Y. Yoshida, “Fast and private submodular and k-submodular functions maximization with matroid constraints,” in In Proc. of International Conference on Machine Learning (ICML), 2020, pp. 7887–7897.
  22. T. Soma, “No-regret algorithms for online k-submodular maximization,” in In Proc. of International Conference on Artificial Intelligence and Statistics (AISTATS), 2019, pp. 1205–1214.
  23. A. Ene and H. L. Nguyen, “Streaming algorithm for monotone k-submodular maximization with cardinality constraints,” in ICML 2022, ser. Proc. of MLR, vol. 162.   PMLR, 2022, pp. 5944–5967.
  24. E. Balkanski, S. Qian, and Y. Singer, “Instance specific approximations for submodular maximization,” in Proc. of the 38th ICML 2021, ser. Proceedings of Machine Learning Research, vol. 139.   PMLR, 2021, pp. 609–618.
  25. M. Sviridenko, “A note on maximizing a submodular set function subject to a knapsack constraint,” Oper. Res. Lett., vol. 32, no. 1, pp. 41–43, 2004.
  26. J. Leskovec and Krevl, “A. snap datasets: Stanford large network dataset collection,” 2014. [Online]. Available: http://snap. stanford.edu/data
  27. P. Bodik, W. Hong, C. Guestrin, S. Madden, M. Paskin, and R. Thibaux, “Intel lab,” 2004. [Online]. Available: http://db.csail.mit.edu/labdata/labdata.html
  28. W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization in social networks under the linear threshold model,” in In Proc. of IEEE International Conference on Data Mining (ICDM), 2010, pp. 88–97.
  29. C. Borgs, M. Brautbar, J. T. Chayes, and B. Lucier, “Maximizing social influence in nearly optimal time,” in In Proc. of Symposium on Discrete Algorithms (SODA), 2014, pp. 946–957.

Summary

We haven't generated a summary for this paper yet.