Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp semiclassical spectral asymptotics for Schrödinger operators with non-smooth potentials (2309.12015v2)

Published 21 Sep 2023 in math.SP, math-ph, and math.MP

Abstract: We consider semiclassical Schr\"odinger operators acting in $L2(\mathbb{R}d)$ with $d\geq3$. For these operators we establish a sharp spectral asymptotics without full regularity. For the counting function we assume the potential is locally integrable and that the negative part of the potential minus a constant is one time differentiable and the derivative is H\"older continues with parameter $\mu\geq1/2$. Moreover we also consider sharp Riesz means of order $\gamma$ with $\gamma\in(0,1]$. Here we assume the potential is locally integrable and that the negative part of the potential minus a constant is two time differentiable and the second derivative is H\"older continues with parameter $\mu$ that depends on $\gamma$.

Summary

We haven't generated a summary for this paper yet.