On the Nori and Hodge realisations of Voevodsky motives (2309.11999v4)
Abstract: We show that the derived category of perverse Nori motives and mixed Hodge modules are the derived categories of their constructible hearts. This enables us to construct $\infty$-categorical lifts of the six operations and therefore to obtain realisation functors from the category of Voevodsky \'etale motives to the derived categories of perverse Nori motives and mixed Hodge modules that commute with the operations. We give a proof that the realisation induces an equivalence of categories between Artin motives in the category of \'etale motives and Artin motives in the derived category of Nori motives. We also prove that if a motivic $t$-structure exists then Voevodsky \'etale motives and the derived category of perverse Nori motives are equivalent. Finally we give a presentation of the indization of the derived category of perverse Nori motives as a category of modules in Voevodsky \'etale motives that gives a continuity result for perverse Nori motives.
- 1-motivic sheaves and the Albanese functor. J. Pure Appl. Algebra, 213(5):809–839, 2009.
- Nori 1-motives. Math. Ann., 361(1-2):367–402, 2015.
- The six-functor formalism for rigid analytic motives. Forum Math. Sigma, 10:Paper No. e61, 182, 2022.
- Yves André. Une introduction aux motifs (motifs purs, motifs mixtes, périodes), volume 17 of Panoramas et Synthèses [Panoramas and Syntheses]. Société Mathématique de France, Paris, 2004.
- Donu Arapura. An abelian category of motivic sheaves. Adv. Math., 233:135–195, 2013.
- Donu Arapura. Motivic sheaves revisited. J. Pure Appl. Algebra, 227(8):Paper No. 107125, 22, 2023.
- The Stacks Project Authors. Stacks project, 2018. https://stacks.math.columbia.edu/.
- Joseph Ayoub. Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I. Astérisque, (314):x+466, 2007.
- Joseph Ayoub. Note sur les opérations de Grothendieck et la réalisation de Betti. J. Inst. Math. Jussieu, 9(2):225–263, 2010.
- Joseph Ayoub. La réalisation étale et les opérations de Grothendieck. Ann. Sci. Éc. Norm. Supér. (4), 47(1):1–145, 2014.
- Joseph Ayoub. L’algèbre de Hopf et le groupe de Galois motiviques d’un corps de caractéristique nulle, I. J. Reine Angew. Math., 693:1–149, 2014.
- Joseph Ayoub. Anabelian presentation of the motivic Galois group in characteristic zero. Preprint, available at https://user.math.uzh.ch/ayoub/PDF-Files/Anabel.pdf, 2022.
- Tom Bachmann. Rigidity in étale motivic stable homotopy theory. Algebr. Geom. Topol., 21(1):173–209, 2021.
- Owen Barrett. The derived category of the abelian category of constructible sheaves. Manuscripta Math., 166(3-4):419–425, 2021.
- Faisceaux pervers. In Analysis and topology on singular spaces, I (Luminy, 1981), volume 100 of Astérisque, pages 5–171. Soc. Math. France, Paris, 1982.
- Controlled objects in left-exact $\infty$-categories and the Novikov conjecture. Preprint, available at https://cisinski.app.uni-regensburg.de/unik.pdf, 2019.
- A. A. Beilinson. On the derived category of perverse sheaves. In K𝐾Kitalic_K-theory, arithmetic and geometry (Moscow, 1984–1986), volume 1289 of Lecture Notes in Math., pages 27–41. Springer, Berlin, 1987.
- A. Beilinson. Remarks on Grothendieck’s standard conjectures. In Regulators, volume 571 of Contemp. Math., pages 25–32. Amer. Math. Soc., Providence, RI, 2012.
- Mikhail V. Bondarko. Weights and t-structures: In general triangulated categories, for 1-motives, mixed motives, and for mixed Hodge complexes and modules. Preprint, available at https://arxiv.org/abs/1011.3507, 2011.
- Mikhail V. Bondarko. Mixed motivic sheaves (and weights for them) exist if ‘ordinary’ mixed motives do. Compos. Math., 151(5):917–956, 2015.
- Étale motives. Compos. Math., 152(3):556–666, 2016.
- Triangulated categories of mixed motives. Springer Monographs in Mathematics. Springer, Cham, [2019] ©2019.
- Utsav Choudhury and Martin Gallauer Alves de Souza. An isomorphism of motivic Galois groups. Adv. Math., 313:470–536, 2017.
- Denis-Charles Cisinski. Higher categories and homotopical algebra, volume 180 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2019.
- Hyperdescent and étale K𝐾Kitalic_K-theory. Invent. Math., 225(3):981–1076, 2021.
- Lee Cohn. Differential Graded Categories are k-linear Stable Infinity Categories. Preprint, available at https://arxiv.org/abs/1308.2587, 2016.
- Kevin Coulembier. Some homological properties of ind-completions and highest weight categories. J. Algebra, 562:341–367, 2020.
- Pierre Deligne. Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math., (44):5–77, 1974.
- Pierre Deligne. La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math., (52):137–252, 1980.
- The universal six-functor formalism. Ann. K-Theory, 7(4):599–649, 2022.
- Brad Drew. Motivic Hodge modules, 2018. Preprint, available at https://bdrew.gitlab.io/pdf/DH.pdf.
- Milnor excision for motivic spectra. J. Reine Angew. Math., 779:223–235, 2021.
- Najmuddin Fakhruddin. Notes of Nori’s lectures on Mixed Motives. TIFR, Mumbai,Preprint, 2000.
- Alexander Grothendieck. Sur quelques points d’algèbre homologique. Tohoku Math. J. (2), 9:119–221, 1957.
- A. Grothendieck. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I. Inst. Hautes Études Sci. Publ. Math., (11):167, 1961.
- Johann Haas. Lisse 1111-motives. PhD thesis, The University of Regensburg, 2019. available at https://epub.uni-regensburg.de/43953/1/Thesis%20for%20bib.pdf.
- Daniel Harrer. Comparison of the Categories of Motives Defined by Voevodsky and Nori. PhD thesis, The University of Freiburg, 2016. available at https://d-nb.info/1122743106/34.
- Periods and Nori motives, volume 65 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Cham, 2017. With contributions by Benjamin Friedrich and Jonas von Wangenheim.
- Mark Hovey. Model category structures on chain complexes of sheaves. Trans. Amer. Math. Soc., 353(6):2441–2457, 2001.
- Marc Hoyois. A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula. Algebr. Geom. Topol., 14(6):3603–3658, 2014.
- Axiomatic stable homotopy theory. Mem. Amer. Math. Soc., 128(610):x+114, 1997.
- Constructible sheaves on schemes. Adv. Math., 429:Paper No. 109179, 46, 2023.
- Relative perversity. Comm. Amer. Math. Soc., 3:631–668, 2023.
- Annette Huber. Calculation of derived functors via Ind-categories. J. Pure Appl. Algebra, 90(1):39–48, 1993.
- Annette Huber. Realization of Voevodsky’s motives. J. Algebraic Geom., 9(4):755–799, 2000.
- David Hébert. Structure de poids à la Bondarko sur les motifs de Beilinson. Compos. Math., 147(5):1447–1462, 2011.
- The four operations on perverse motives. Preprint, available at http://perso.ens-lyon.fr/sophie.morel/PerverseMotives.pdf, 2022.
- Florian Ivorra. Perverse, Hodge and motivic realizations of étale motives. Compos. Math., 152(6):1237–1285, 2016.
- Florian Ivorra. Perverse Nori motives. Math. Res. Lett., 24(4):1097–1131, 2017.
- Sheaves on manifolds, volume 292 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel.
- Categories and sheaves, volume 332 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006.
- Marc Levine. Mixed motives. In Handbook of K𝐾Kitalic_K-theory. Vol. 1, 2, pages 429–521. Springer, Berlin, 2005.
- Jacob Lurie. Kerodon. https://kerodon.net/.
- Jacob Lurie. Spectral Algebraic Geometry. available at https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf.
- Jacob Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009.
- Jacob Lurie. Derived Algebraic Geometry VII: Spectral Schemes, 2011. available at https://people.math.harvard.edu/~lurie/papers/DAG-VII.pdf.
- Jacob Lurie. Higher Algebra, 2022. available at https://people.math.harvard.edu/~lurie/papers/HA.pdf.
- Gluing restricted nerves of $\infty$-categories. Preprint, available at https://arxiv.org/abs/1211.5294, 2015.
- Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.
- Sophie Morel. Complexes pondérés sur les compactifications de Baily-Borel: le cas des variétés de Siegel. J. Amer. Math. Soc., 21(1):23–61, 2008.
- Sophie Morel. Mixed -adic complexes for schemes over number fields. Preprint, available at http://perso.ens-lyon.fr/sophie.morel/sur_Q.pdf, 2019.
- 𝐀1superscript𝐀1{\bf A}^{1}bold_A start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math., (90):45–143, 1999.
- Madhav V. Nori. Constructible sheaves. In Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000), volume 16 of Tata Inst. Fund. Res. Stud. Math., pages 471–491. Tata Inst. Fund. Res., Bombay, 2002.
- Adjoint functor theorems for ∞\infty∞-categories. J. Lond. Math. Soc. (2), 101(2):659–681, 2020.
- Weightless cohomology of algebraic varieties. J. Algebra, 424:147–189, 2015.
- Fabrice Orgogozo. Isomotifs de dimension inférieure ou égale à un. Manuscripta Math., 115(3):339–360, 2004.
- Simon Pepin Lehalleur. Constructible 1-motives and exactness of realisation functors. Doc. Math., 24:1721–1737, 2019.
- Simon Pepin Lehalleur. Triangulated categories of relative 1-motives. Adv. Math., 347:473–596, 2019.
- Benedikt Preis. Motivic Nearby Cycles Functors, Local Monodromy and Universal Local Acyclicity. PhD thesis, The University of Regensburg, 2023. available at https://arxiv.org/abs/2305.03405.
- Marco Robalo. K𝐾Kitalic_K-theory and the bridge from motives to noncommutative motives. Adv. Math., 269:399–550, 2015.
- The intersection motive of the moduli stack of shtukas. Forum Math. Sigma, 8:Paper No. e8, 99, 2020.
- Raphaël Ruimy. Abelian Categories of Artin étale Motives with Integral Coefficients. PhD thesis, ENS de Lyon, 2022. available at https://raphaelruimy2.wixsite.com/rruimy/research.
- Raphaël Ruimy. Artin perverse sheaves, 2023. Preprint, available at http://arxiv.org/abs/2205.07796.
- Morihiko Saito. Mixed Hodge modules. Publ. Res. Inst. Math. Sci., 26(2):221–333, 1990.
- Morihiko Saito. On the formalisme of mixed sheaves. Preprint, available at https://arxiv.org/abs/math/0611597, 2006.
- Revêtements étales et groupe fondamental. Springer-Verlag, Berlin-New York,,, 1971. Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1)., Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud.
- Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Springer-Verlag, Berlin-New York,,, 1972. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4)., Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.
- Luca Terenzi. On the Six Functor Formalism for Nori Motivic Sheaves. PhD thesis, The University of Freiburg, 2023. available at https://sites.google.com/view/luca-terenzi/research.
- Vaibhav Vaish. Punctual gluing of t𝑡titalic_t-structures and weight structures. Manuscripta Math., 162(3-4):341–366, 2020.
- Vladimir Voevodsky. Homology of schemes and covariant motives. ProQuest LLC, Ann Arbor, MI, 1992. Thesis (Ph.D.)–Harvard University.
- Vladimir Voevodsky. Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic. Int. Math. Res. Not., (7):351–355, 2002.
- Vadim Vologodsky. On the derived DG functors. Math. Res. Lett., 17(6):1155–1170, 2010.
- Cycles, transfers, and motivic homology theories, volume 143 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2000.