Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simulation-to-reality UAV Fault Diagnosis in windy environments (2309.11897v1)

Published 21 Sep 2023 in cs.RO

Abstract: Monitoring propeller failures is vital to maintain the safe and reliable operation of quadrotor UAVs. The simulation-to-reality UAV fault diagnosis technique offer a secure and economical approach to identify faults in propellers. However, classifiers trained with simulated data perform poorly in real flights due to the wind disturbance in outdoor scenarios. In this work, we propose an uncertainty-based fault classifier (UFC) to address the challenge of sim-to-real UAV fault diagnosis in windy scenarios. It uses the ensemble of difference-based deep convolutional neural networks (EDDCNN) to reduce model variance and bias. Moreover, it employs an uncertainty-based decision framework to filter out uncertain predictions. Experimental results demonstrate that the UFC can achieve 100% fault-diagnosis accuracy with a data usage rate of 33.6% in the windy outdoor scenario.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. H. Shraim, A. Awada, and R. Youness, “A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control,” IEEE Aerosp. Electron. Syst. Mag., vol. 33, no. 7, pp. 14–33, 2018.
  2. W. Zhang, J. Tong, F. Liao, and Y. Zhang, “Difference-based deep convolutional neural network for simulation-to-reality uav fault diagnosis,” 2023. [Online]. Available: https://arxiv.org/abs/2302.08117
  3. G. Iannace, G. Ciaburro, and A. Trematerra, “Fault diagnosis for uav blades using artificial neural network,” Robotics, vol. 8, no. 3, p. 59, 2019.
  4. J. Park, Y. Jung, and J.-H. Kim, “Multiclass Classification Fault Diagnosis of Multirotor UAVs Utilizing a Deep Neural Network,” Int. J. Control Autom. Syst., vol. 20, no. 4, pp. 1316–1326, 2022.
  5. R. Falcón, H. Ríos, and A. Dzul, “A robust fault diagnosis for quad-rotors: a sliding-mode observer approach,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 6, pp. 4487–4496.
  6. G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.
  7. W. Zhang, C. Li, G. Peng, Y. Chen, and Z. Zhang, “A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load,” Mech. Syst. Signal Proc., vol. 100, pp. 439–453, 2018.
  8. J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.
  9. W. Zhang, Y. Zhang, N. Liu, K. Ren, and P. Wang, “IPAPRec: A promising tool for learning high-performance mapless navigation skills with deep reinforcement learning,” IEEE/ASME Trans. Mechatronics, vol. 27, no. 6, pp. 5451–5461, 2022.
  10. Y. Xiao, H. Shao, S. Han, Z. Huo, and J. Wan, “Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 6, pp. 5254–5263, 2022.
  11. R. Puchalski and W. Giernacki, “Uav fault detection methods, state-of-the-art,” Drones, vol. 6, no. 11, 2022.
  12. P. Yang, H. Geng, C. Wen, and P. Liu, “An Intelligent Quadrotor Fault Diagnosis Method Based on Novel Deep Residual Shrinkage Network,” Drones, vol. 5, no. 4, p. 133, 2021.
  13. C. Li, S. Li, A. Zhang, L. Yang, E. Zio, M. Pecht, and K. Gryllias, “A Siamese hybrid neural network framework for few-shot fault diagnosis of fixed-wing unmanned aerial vehicles,” Journal of Computational Design and Engineering, vol. 9, no. 4, pp. 1511–1524, 07 2022.
  14. Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to human-level performance in face verification,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1701–1708.
  15. M. Hearst, S. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector machines,” IEEE Intell. Syst., vol. 13, no. 4, pp. 18–28, 1998.
  16. S. S. Katta, K. Vuojärvi, S. Nandyala, U.-M. Kovalainen, and L. Baddeley, “Real-World On-Board Uav Audio Data Set For Propeller Anomalies,” in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2022, pp. 146–150.
  17. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, 2017.
  18. T. Han and Y.-F. Li, “Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles,” Reliab. Eng. Syst., vol. 226, p. 108648, 2022.
  19. K. Guo, N. Wang, D. Liu, and X. Peng, “Uncertainty-aware lstm based dynamic flight fault detection for uav actuator,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–13, 2023.
  20. H. Zhou, W. Chen, L. Cheng, J. Liu, and M. Xia, “Trustworthy fault diagnosis with uncertainty estimation through evidential convolutional neural networks,” IEEE Trans. Ind. Informat., pp. 1–11, 2023.
  21. W. Zhang, J. Tong, F. Liao, and Y. Zhang, “Simulation-to-reality uav fault diagnosis with deep learning,” 2023. [Online]. Available: https://arxiv.org/abs/2302.04410
  22. Y. Gal, “Uncertainty in deep learning,” Ph.D. dissertation, University of Cambridge, 2016.
  23. J. J. Tong, W. Zhang, F. Liao, C. F. Li, and Y. F. Zhang, “Machine learning for uav propeller fault detection based on a hybrid data generation model,” 2023. [Online]. Available: https://arxiv.org/abs/2302.01556
  24. W. Craig, D. Yeo, and D. A. Paley, “Geometric attitude and position control of a quadrotor in wind,” Journal of Guidance, Control, and Dynamics, vol. 43, no. 5, pp. 870–883, 2020.
Citations (1)

Summary

We haven't generated a summary for this paper yet.