Separability transitions in topological states induced by local decoherence (2309.11879v2)
Abstract: We study states with intrinsic topological order subjected to local decoherence from the perspective of separability, i.e., whether a decohered mixed state can be expressed as an ensemble of short-range entangled (SRE) pure states. We focus on toric codes and the X-cube fracton state and provide evidence for the existence of decoherence-induced separability transitions that precisely coincide with the threshold for the feasibility of active error correction. A key insight is that local decoherence acting on the 'parent' cluster states of these models results in a Gibbs state. As an example, for the 2d (3d) toric code subjected to bit-flip errors, we show that the decohered density matrix can be written as a convex sum of SRE states for $p > p_c$, where $p_c$ is related to the paramagnetic-ferromagnetic transition in the 2d (3d) random-field bond Ising model along the Nishimori line.
- R. F. Werner, Phys. Rev. A 40, 4277 (1989).
- M. B. Hastings, Physical review letters 107, 210501 (2011).
- A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
- M. Horodecki, P. Horodecki, and R. Horodecki, Physics Letters A 223, 1 (1996).
- J. Eisert and M. B. Plenio, Journal of Modern Optics 46, 145 (1999).
- G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).
- M. B. Plenio, Physical review letters 95, 090503 (2005).
- C. de Groot, A. Turzillo, and N. Schuch, Quantum 6, 856 (2022).
- R. Ma and C. Wang, arXiv preprint arXiv:2209.02723 (2022).
- J. Y. Lee, Y.-Z. You, and C. Xu, arXiv preprint arXiv:2210.16323 (2022a).
- J. Y. Lee, C.-M. Jian, and C. Xu, arXiv preprint arXiv:2301.05238 (2023).
- Y. Zou, S. Sang, and T. H. Hsieh, Physical Review Letters 130, 250403 (2023).
- R. Ma, arXiv preprint arXiv:2304.08277 (2023).
- K. Su, N. Myerson-Jain, and C. Xu, arXiv preprint arXiv:2305.13410 (2023).
- Z. Wang, Z. Wu, and Z. Wang, arXiv preprint arXiv:2307.13758 (2023).
- R. Verresen, N. Tantivasadakarn, and A. Vishwanath, arXiv preprint arXiv:2112.03061 (2021).
- P. W. Shor, Proceedings of 37th conference on foundations of computer science , 56 (1996).
- D. Aharonov and M. Ben-Or, Proceedings of the twenty-ninth annual ACM symposium on Theory of computing , 176 (1997).
- A. Y. Kitaev, Annals of Physics 303, 2 (2003).
- E. Knill, R. Laflamme, and W. H. Zurek, Science 279, 342 (1998).
- J. Preskill, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 385 (1998).
- B. M. Terhal, Reviews of Modern Physics 87, 307 (2015).
- D. Aharonov, Physical Review A 62, 062311 (2000).
- C. Wang, J. Harrington, and J. Preskill, Annals of Physics 303, 31 (2003).
- R. Raussendorf, S. Bravyi, and J. Harrington, Physical Review A 71, 062313 (2005).
- H. Nishimori, Progress of Theoretical Physics 66, 1169 (1981).
- N. Sourlas, Nature 339, 693 (1989).
- P. Ruján, Physical review letters 70, 2968 (1993).
- H. Nishimori, Journal of the Physical Society of Japan 62, 2973 (1993).
- T.-C. Lu, T. H. Hsieh, and T. Grover, Physical Review Letters 125, 116801 (2020).
- G. Hooft, Nuclear Physics: B 138, 1 (1978).
- J. B. Kogut, Reviews of Modern Physics 51, 659 (1979).
- E. Fradkin, Field theories of condensed matter physics (Cambridge University Press, 2013).
- J. Kogut and L. Susskind, Physical Review D 11, 395 (1975).
- A. Honecker, M. Picco, and P. Pujol, Physical review letters 87, 047201 (2001).
- R. Fan, Physical Review Letters 129, 260403 (2022).
- M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006).
- A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).
- C. Castelnovo and C. Chamon, Physical Review B 77, 054433 (2008).
- H. A. Kramers and G. H. Wannier, Physical Review 60, 252 (1941).
- Y. Ozeki and N. Ito, Journal of Physics A: Mathematical and General 31, 5451 (1998).
- S. Vijay, J. Haah, and L. Fu, Physical Review B 94, 235157 (2016).
- G. Savvidy and F. Wegner, Nuclear Physics B 413, 605 (1994).