Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Article Classification with Graph Neural Networks and Multigraphs (2309.11341v2)

Published 20 Sep 2023 in cs.LG and cs.CL

Abstract: Classifying research output into context-specific label taxonomies is a challenging and relevant downstream task, given the volume of existing and newly published articles. We propose a method to enhance the performance of article classification by enriching simple Graph Neural Network (GNN) pipelines with multi-graph representations that simultaneously encode multiple signals of article relatedness, e.g. references, co-authorship, shared publication source, shared subject headings, as distinct edge types. Fully supervised transductive node classification experiments are conducted on the Open Graph Benchmark OGBN-arXiv dataset and the PubMed diabetes dataset, augmented with additional metadata from Microsoft Academic Graph and PubMed Central, respectively. The results demonstrate that multi-graphs consistently improve the performance of a variety of GNN models compared to the default graphs. When deployed with SOTA textual node embedding methods, the transformed multi-graphs enable simple and shallow 2-layer GNN pipelines to achieve results on par with more complex architectures.

Summary

We haven't generated a summary for this paper yet.