Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fed-LSAE: Thwarting Poisoning Attacks against Federated Cyber Threat Detection System via Autoencoder-based Latent Space Inspection (2309.11053v1)

Published 20 Sep 2023 in cs.CR

Abstract: The significant rise of security concerns in conventional centralized learning has promoted federated learning (FL) adoption in building intelligent applications without privacy breaches. In cybersecurity, the sensitive data along with the contextual information and high-quality labeling in each enterprise organization play an essential role in constructing high-performance ML models for detecting cyber threats. Nonetheless, the risks coming from poisoning internal adversaries against FL systems have raised discussions about designing robust anti-poisoning frameworks. Whereas defensive mechanisms in the past were based on outlier detection, recent approaches tend to be more concerned with latent space representation. In this paper, we investigate a novel robust aggregation method for FL, namely Fed-LSAE, which takes advantage of latent space representation via the penultimate layer and Autoencoder to exclude malicious clients from the training process. The experimental results on the CIC-ToN-IoT and N-BaIoT datasets confirm the feasibility of our defensive mechanism against cutting-edge poisoning attacks for developing a robust FL-based threat detector in the context of IoT. More specifically, the FL evaluation witnesses an upward trend of approximately 98% across all metrics when integrating with our Fed-LSAE defense.

Citations (1)

Summary

We haven't generated a summary for this paper yet.