Learning Model Predictive Control with Error Dynamics Regression for Autonomous Racing (2309.10716v2)
Abstract: This work presents a novel Learning Model Predictive Control (LMPC) strategy for autonomous racing at the handling limit that can iteratively explore and learn unknown dynamics in high-speed operational domains. We start from existing LMPC formulations and modify the system dynamics learning method. In particular, our approach uses a nominal, global, nonlinear, physics-based model with a local, linear, data-driven learning of the error dynamics. We conducted experiments in simulation and on 1/10th scale hardware, and deployed the proposed LMPC on a full-scale autonomous race car used in the Indy Autonomous Challenge (IAC) with closed loop experiments at the Putnam Park Road Course in Indiana, USA. The results show that the proposed control policy exhibits improved robustness to parameter tuning and data scarcity. Incremental and safety-aware exploration toward the limit of handling and iterative learning of the vehicle dynamics in high-speed domains is observed both in simulations and experiments.
- M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1TENTH: An Open-source Evaluation Environment for Continuous Control and Reinforcement Learning,” in Proceedings of the NeurIPS 2019 Competition and Demonstration Track. PMLR, Aug. 2020, pp. 77–89.
- “Indy Autonomous Challenge,” Feb. 2023. [Online]. Available: https://www.indyautonomouschallenge.com
- A. Wischnewski, M. Geisslinger, J. Betz, T. Betz, F. Fent, A. Heilmeier, L. Hermansdorfer, T. Herrmann, S. Huch, P. Karle, F. Nobis, L. Ögretmen, M. Rowold, F. Sauerbeck, T. Stahl, R. Trauth, M. Lienkamp, and B. Lohmann, “Indy autonomous challenge – autonomous race cars at the handling limits,” 2022.
- A. Wischnewski, T. Herrmann, F. Werner, and B. Lohmann, “A Tube-MPC Approach to Autonomous Multi-Vehicle Racing on High-Speed Ovals,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1, pp. 368–378, Jan. 2023.
- J. Kabzan, M. I. Valls, V. J. F. Reijgwart, H. F. C. Hendrikx, C. Ehmke, M. Prajapat, A. Bühler, N. Gosala, M. Gupta, R. Sivanesan, A. Dhall, E. Chisari, N. Karnchanachari, S. Brits, M. Dangel, I. Sa, R. Dubé, A. Gawel, M. Pfeiffer, A. Liniger, J. Lygeros, and R. Siegwart, “AMZ Driverless: The full autonomous racing system,” Journal of Field Robotics, vol. 37, no. 7, pp. 1267–1294, 2020.
- J. Betz, T. Betz, F. Fent, M. Geisslinger, A. Heilmeier, L. Hermansdorfer, T. Herrmann, S. Huch, P. Karle, M. Lienkamp, B. Lohmann, F. Nobis, L. Ögretmen, M. Rowold, F. Sauerbeck, T. Stahl, R. Trauth, F. Werner, and A. Wischnewski, “TUM autonomous motorsport: An autonomous racing software for the Indy Autonomous Challenge,” Journal of Field Robotics, vol. 40, no. 4, pp. 783–809, 2023.
- J. Funke, P. Theodosis, R. Hindiyeh, G. Stanek, K. Kritatakirana, C. Gerdes, D. Langer, M. Hernandez, B. Müller-Bessler, and B. Huhnke, “Up to the limits: Autonomous Audi TTS,” in 2012 IEEE Intelligent Vehicles Symposium, Jun. 2012, pp. 541–547.
- U. Rosolia and F. Borrelli, “Learning How to Autonomously Race a Car: A Predictive Control Approach,” IEEE Transactions on Control Systems Technology, vol. 28, no. 6, pp. 2713–2719, Nov. 2020.
- M. Bujarbaruah, X. Zhang, U. Rosolia, and F. Borrelli, “Adaptive mpc for iterative tasks,” in 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018, pp. 6322–6327.
- A. Sasfi, M. N. Zeilinger, and J. Köhler, “Robust adaptive mpc using control contraction metrics,” Automatica, vol. 155, p. 111169, 2023.
- J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-based model predictive control for autonomous racing,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3363–3370, 2019.
- L. Hewing, A. Liniger, and M. N. Zeilinger, “Cautious NMPC with Gaussian Process Dynamics for Autonomous Miniature Race Cars,” in 2018 European Control Conference (ECC), Jun. 2018, pp. 1341–1348.
- J. Ning and M. Behl, “Vehicle dynamics modeling for autonomous racing using gaussian processes,” 2023.
- D. Kalaria, Q. Lin, and J. M. Dolan, “Delay-aware robust control for safe autonomous driving,” in 2022 IEEE Intelligent Vehicles Symposium (IV), 2022, pp. 1565–1571.
- E. L. Zhu, F. L. Busch, J. Johnson, and F. Borrelli, “A gaussian process model for opponent prediction in autonomous racing,” 2023.
- T. Brüdigam, A. Capone, S. Hirche, D. Wollherr, and M. Leibold, “Gaussian process-based stochastic model predictive control for overtaking in autonomous racing,” 2021.
- D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative learning control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp. 96–114, 2006.
- U. Rosolia and F. Borrelli, “Learning Model Predictive Control for Iterative Tasks: A Computationally Efficient Approach for Linear System,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 3142–3147, Jul. 2017.
- M. Brunner, U. Rosolia, J. Gonzales, and F. Borrelli, “Repetitive learning model predictive control: An autonomous racing example,” in 2017 IEEE 56th annual conference on decision and control (CDC). IEEE, 2017, pp. 2545–2550.
- J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic vehicle models for autonomous driving control design,” IEEE Intelligent Vehicles Symposium, Proceedings, vol. 2015-August, pp. 1094–1099, 2015.
- F. Christ, A. Wischnewski, A. Heilmeier, and B. Lohmann, “Time-optimal trajectory planning for a race car considering variable tyre-road friction coefficients,” Vehicle System Dynamics, vol. 59, no. 4, pp. 588–612, Apr. 2021.
- U. Rosolia and F. Borrelli, “Learning model predictive control for iterative tasks. a data-driven control framework,” IEEE Transactions on Automatic Control, vol. 63, no. 7, pp. 1883–1896, 2017.
- V. A. Epanechnikov, “Non-Parametric Estimation of a Multivariate Probability Density,” Theory of Probability & Its Applications, vol. 14, no. 1, pp. 153–158, Jan. 1969.
- H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Vehicle system dynamics, vol. 21, no. S1, pp. 1–18, 1992.