Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentiable Quantum Architecture Search for Quantum Reinforcement Learning (2309.10392v2)

Published 19 Sep 2023 in quant-ph and cs.LG

Abstract: Differentiable quantum architecture search (DQAS) is a gradient-based framework to design quantum circuits automatically in the NISQ era. It was motivated by such as low fidelity of quantum hardware, low flexibility of circuit architecture, high circuit design cost, barren plateau (BP) problem, and periodicity of weights. People used it to address error mitigation, unitary decomposition, and quantum approximation optimization problems based on fixed datasets. Quantum reinforcement learning (QRL) is a part of quantum machine learning and often has various data. QRL usually uses a manually designed circuit. However, the pre-defined circuit needs more flexibility for different tasks, and the circuit design based on various datasets could become intractable in the case of a large circuit. The problem of whether DQAS can be applied to quantum deep Q-learning with various datasets is still open. The main target of this work is to discover the capability of DQAS to solve quantum deep Q-learning problems. We apply a gradient-based framework DQAS on reinforcement learning tasks and evaluate it in two different environments - cart pole and frozen lake. It contains input- and output weights, progressive search, and other new features. The experiments conclude that DQAS can design quantum circuits automatically and efficiently. The evaluation results show significant outperformance compared to the manually designed circuit. Furthermore, the performance of the automatically created circuit depends on whether the super-circuit learned well during the training process. This work is the first to show that gradient-based quantum architecture search is applicable to QRL tasks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell, et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019.
  2. M. Alam, S. Kundu, R. O. Topaloglu, and S. Ghosh, “Quantum-classical hybrid machine learning for image classification (iccad special session paper),” arXiv preprint arXiv:2109.02862, 2021.
  3. S. Y.-C. Chen, C.-H. H. Yang, J. Qi, P.-Y. Chen, X. Ma, and H.-S. Goan, “Variational quantum circuits for deep reinforcement learning,” IEEE Access, vol. 8, pp. 141007–141024, 2020.
  4. S.-X. Zhang, C.-Y. Hsieh, S. Zhang, and H. Yao, “Differentiable quantum architecture search,” arXiv preprint arXiv:2010.08561, 2020.
  5. Y. Ma, V. Tresp, L. Zhao, and Y. Wang, “Variational quantum circuit model for knowledge graph embedding,” Advanced Quantum Technologies, vol. 2, no. 7-8, p. 1800078, 2019.
  6. E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.
  7. K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R. Salzmann, D. Scheiermann, and R. Wolf, “Training deep quantum neural networks,” Nature communications, vol. 11, no. 1, pp. 1–6, 2020.
  8. J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum, vol. 2, p. 79, 2018.
  9. M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, et al., “Variational quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–644, 2021.
  10. E. Farhi and H. Neven, “Classification with quantum neural networks on near term processors,” arXiv preprint arXiv:1802.06002, 2018.
  11. V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, “Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, no. 7747, pp. 209–212, 2019.
  12. K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,” Physical Review A, vol. 98, no. 3, p. 032309, 2018.
  13. M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, “Circuit-centric quantum classifiers,” Physical Review A, vol. 101, no. 3, p. 032308, 2020.
  14. M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, and R. Melko, “Quantum boltzmann machine,” Physical Review X, vol. 8, no. 2, p. 021050, 2018.
  15. S. Chakrabarti, Y. Huang, T. Li, S. Feizi, and X. Wu, “Quantum wasserstein generative adversarial networks,” arXiv preprint arXiv:1911.00111, 2019.
  16. B. Coyle, D. Mills, V. Danos, and E. Kashefi, “The born supremacy: quantum advantage and training of an ising born machine,” npj Quantum Information, vol. 6, no. 1, pp. 1–11, 2020.
  17. C. Zoufal, A. Lucchi, and S. Woerner, “Variational quantum boltzmann machines,” Quantum Machine Intelligence, vol. 3, no. 1, pp. 1–15, 2021.
  18. S. Y.-C. Chen, C.-M. Huang, C.-W. Hsing, H.-S. Goan, and Y.-J. Kao, “Variational quantum reinforcement learning via evolutionary optimization,” Machine Learning: Science and Technology, vol. 3, no. 1, p. 015025, 2022.
  19. S. Jerbi, L. M. Trenkwalder, H. P. Nautrup, H. J. Briegel, and V. Dunjko, “Quantum enhancements for deep reinforcement learning in large spaces,” PRX Quantum, vol. 2, no. 1, p. 010328, 2021.
  20. A. Skolik, S. Jerbi, and V. Dunjko, “Quantum agents in the gym: a variational quantum algorithm for deep q-learning,” Quantum, vol. 6, p. 720, 2022.
  21. S.-X. Zhang, C.-Y. Hsieh, S. Zhang, and H. Yao, “Neural predictor based quantum architecture search,” Machine Learning: Science and Technology, vol. 2, no. 4, p. 045027, 2021.
  22. Y. Miao, X. Song, J. D. Co-Reyes, D. Peng, S. Yue, E. Brevdo, and A. Faust, “Differentiable architecture search for reinforcement learning,” in First Conference on Automated Machine Learning (Main Track), 2022.
  23. G. E. Crooks, “Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition,” arXiv preprint arXiv:1905.13311, 2019.
  24. M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, “Evaluating analytic gradients on quantum hardware,” Physical Review A, vol. 99, no. 3, p. 032331, 2019.
  25. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “Openai gym, wiki, cartpole v0.” https://github.com/openai/gym/wiki/CartPole-v0, 2016.
  26. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “Openai gym, wiki, frozenlake v0.” https://github.com/openai/gym/wiki/FrozenLake-v0, 2016.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yize Sun (13 papers)
  2. Yunpu Ma (57 papers)
  3. Volker Tresp (158 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.