Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computational Approaches for App-to-App Retrieval and Design Consistency Check (2309.10328v1)

Published 19 Sep 2023 in cs.HC, cs.IR, and cs.LG

Abstract: Extracting semantic representations from mobile user interfaces (UI) and using the representations for designers' decision-making processes have shown the potential to be effective computational design support tools. Current approaches rely on machine learning models trained on small-sized mobile UI datasets to extract semantic vectors and use screenshot-to-screenshot comparison to retrieve similar-looking UIs given query screenshots. However, the usability of these methods is limited because they are often not open-sourced and have complex training pipelines for practitioners to follow, and are unable to perform screenshot set-to-set (i.e., app-to-app) retrieval. To this end, we (1) employ visual models trained with large web-scale images and test whether they could extract a UI representation in a zero-shot way and outperform existing specialized models, and (2) use mathematically founded methods to enable app-to-app retrieval and design consistency analysis. Our experiments show that our methods not only improve upon previous retrieval models but also enable multiple new applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Seokhyeon Park (7 papers)
  2. Wonjae Kim (25 papers)
  3. Young-Ho Kim (36 papers)
  4. Jinwook Seo (30 papers)
Citations (3)