Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe Control Design through Risk-Tunable Control Barrier Functions (2309.10251v1)

Published 19 Sep 2023 in eess.SY, cs.SY, and math.OC

Abstract: We consider the problem of designing controllers to guarantee safety in a class of nonlinear systems under uncertainties in the system dynamics and/or the environment. We define a class of uncertain control barrier functions (CBFs), and formulate the safe control design problem as a chance-constrained optimization problem with uncertain CBF constraints. We leverage the scenario approach for chance constrained optimization to develop a risk-tunable control design that provably guarantees the satisfaction of CBF safety constraints up to a user-defined probabilistic risk bound, and provides a trade-off between the sample complexity and risk tolerance. We demonstrate the performance of this approach through simulations on a quadcopter navigation problem with obstacle avoidance constraints.

Citations (1)

Summary

We haven't generated a summary for this paper yet.