Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Autoencoder-based Anomaly Detection System for Online Data Quality Monitoring of the CMS Electromagnetic Calorimeter (2309.10157v2)

Published 18 Sep 2023 in physics.ins-det, cs.LG, hep-ex, and physics.data-an

Abstract: The CMS detector is a general-purpose apparatus that detects high-energy collisions produced at the LHC. Online Data Quality Monitoring of the CMS electromagnetic calorimeter is a vital operational tool that allows detector experts to quickly identify, localize, and diagnose a broad range of detector issues that could affect the quality of physics data. A real-time autoencoder-based anomaly detection system using semi-supervised machine learning is presented enabling the detection of anomalies in the CMS electromagnetic calorimeter data. A novel method is introduced which maximizes the anomaly detection performance by exploiting the time-dependent evolution of anomalies as well as spatial variations in the detector response. The autoencoder-based system is able to efficiently detect anomalies, while maintaining a very low false discovery rate. The performance of the system is validated with anomalies found in 2018 and 2022 LHC collision data. Additionally, the first results from deploying the autoencoder-based system in the CMS online Data Quality Monitoring workflow during the beginning of Run 3 of the LHC are presented, showing its ability to detect issues missed by the existing system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
  2. CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, JINST 16 (2021), no. 05, P05014, 10.1088/1748-0221/16/05/P05014.
  3. ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1–29, 10.1016/j.physletb.2012.08.020, arXiv:1207.7214.
  4. CMS Collaboration, “Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC”, Phys. Lett. B 716 (2012) 30–61, 10.1016/j.physletb.2012.08.021, arXiv:1207.7235.
  5. CMS Collaboration, “A measurement of the Higgs boson mass in the diphoton decay channel”, Phys. Lett. B 805 (2020) 135425, 10.1016/j.physletb.2020.135425, arXiv:2002.06398.
  6. V. Azzolini et al., “The Data Quality Monitoring software for the CMS experiment at the LHC: past, present and future”, EPJ Web Conf. 214 (2019) 02003, 10.1051/epjconf/201921402003.
  7. K. Albertsson et al., “Machine Learning in High Energy Physics Community White Paper”, J. Phys. Conf. Ser. 1085 (2018), no. 2, 022008, 10.1088/1742-6596/1085/2/022008, arXiv:1807.02876.
  8. B. Nachman, “Anomaly Detection for Physics Analysis and Less than Supervised Learning”, arXiv:2010.14554.
  9. A. A. Pol et al., “Detector monitoring with artificial neural networks at the CMS experiment at the CERN Large Hadron Collider”, Comput. Softw. Big Sci. 3 (2019), no. 1, 3, 10.1007/s41781-018-0020-1, arXiv:1808.00911.
  10. CMS Collaboration, “Improving data quality monitoring via a partnership of technologies and resources between the CMS experiment at CERN and industry”, EPJ Web Conf. 214 (2019) 01007, 10.1051/epjconf/201921401007.
  11. G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks”, Science 313 (2006), no. 5786, 504, 10.1126/science.1127647.
  12. CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
  13. CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
  14. CMS Collaboration, “Reconstruction of signal amplitudes in the CMS electromagnetic calorimeter in the presence of overlapping proton-proton interactions”, JINST 15 (2020), no. 10, P10002, 10.1088/1748-0221/15/10/P10002.
  15. N. Almeida et al., “The selective read-out processor for the cms electromagnetic calorimeter”, in IEEE Symposium Conference Record Nuclear Science 2004., volume 3, pp. 1721–1725 Vol. 3. 2004. 10.1109/NSSMIC.2004.1462573.
  16. S. Rutherford, “Study of the Effects of Data Reduction Algorithms on Physics Reconstruction in the CMS ECAL”, technical report, CERN, Geneva, 2003.
  17. L. Tuura, A. Meyer, I. Segoni, and G. Della Ricca, “CMS data quality monitoring: Systems and experiences”, J. Phys. Conf. Ser. 219 (2010) 072020, 10.1088/1742-6596/219/7/072020.
  18. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition”, Proceedings of the IEEE 86 (1998), no. 11, 2278–2324, 10.1109/5.726791.
  19. K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”, 10.1109/CVPR.2016.90, arXiv:1512.03385.
  20. A. Paszke et al., “Pytorch: An imperative style, high-performance deep learning library”, in Advances in Neural Information Processing Systems 32, H. Wallach et al., eds., pp. 8024–8035. Curran Associates, Inc., 2019.
  21. V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines”, in Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10, pp. 807–814. Omnipress, USA, 2010.
  22. J. Bai, F. Lu, K. Zhang et al., “ONNX: Open Neural Network Exchange”. https://github.com/onnx/onnx, 2019.
  23. ONNX Runtime developers, “ONNX Runtime”. https://onnxruntime.ai/, 2021.
  24. CMS Collaboration, P. K. Siddireddy, “The CMS ECAL Trigger and DAQ system: electronics auto-recovery and monitoring”, 6, 2018. arXiv:1806.09136.
Citations (2)

Summary

We haven't generated a summary for this paper yet.