Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adjustbot: Bio-Inspired Quadruped Robot with Adjustable Posture and Undulated Body for Challenging Terradynamic Tasks (2309.10135v1)

Published 18 Sep 2023 in cs.RO

Abstract: The ability to modify morphology in response to environmental changes represents a highly advantageous feature in biological organisms, facilitating their adaptation to diverse environmental conditions. While some robots have the capability to modify their morphology by utilizing adaptive body parts, the practical implementation of morphological transformations in robotic systems is still relatively restricted. This limitation can be attributed, in part, to the intricate nature of achieving such transformations, which necessitates the integration of advanced materials, control systems, and design approaches. In nature, a range of morphology adaptation strategies is employed to achieve optimal performance and efficiency, such as those employed by crocodiles and alligators, who adjust their body posture depending on the speed and the surface they traverse on. Drawing inspiration from these biological examples, this paper introduces Adjustbot, a quadruped robot with an undulating body capable of adjusting its body posture. Its adaptive morphology allows it to traverse a wide range of terradynamically challenging surfaces and facilitates avoidance of collisions, navigation through narrow channels, obstacle traversal, and incline negotiation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. J. Bongard, “Morphological change in machines accelerates the evolution of robust behavior,” Proceedings of the National Academy of Sciences, vol. 108, no. 4, pp. 1234–1239, 2011.
  2. T. F. Nygaard, C. P. Martin, J. Torresen, K. Glette, and D. Howard, “Real-world embodied ai through a morphologically adaptive quadruped robot,” Nature Machine Intelligence, vol. 3, no. 5, pp. 410–419, 2021.
  3. M. Cianchetti, M. Calisti, L. Margheri, M. Kuba, and C. Laschi, “Bioinspired locomotion and grasping in water: the soft eight-arm octopus robot,” Bioinspiration & biomimetics, vol. 10, no. 3, p. 035003, 2015.
  4. S. Mintchev and D. Floreano, “Adaptive morphology: A design principle for multimodal and multifunctional robots,” IEEE Robotics & Automation Magazine, vol. 23, no. 3, pp. 42–54, 2016.
  5. C. D. Williams and A. A. Biewener, “Pigeons trade efficiency for stability in response to level of challenge during confined flight,” Proceedings of the National Academy of Sciences, vol. 112, no. 11, pp. 3392–3396, 2015.
  6. D. K. Riskin, A. Bergou, K. S. Breuer, and S. M. Swartz, “Upstroke wing flexion and the inertial cost of bat flight,” Proceedings of the Royal Society B: Biological Sciences, vol. 279, no. 1740, pp. 2945–2950, 2012.
  7. J. Brackenbury, “Caterpillar kinematics,” Nature, vol. 390, no. 6659, pp. 453–453, 1997.
  8. M. García-París and S. M. Deban, “A novel antipredator mechanism in salamanders: rolling escape in hydromantes platycephalus,” Journal of herpetology, vol. 29, no. 1, pp. 149–151, 1995.
  9. S. M. Reilly and J. A. Elias, “Locomotion in alligator mississippiensis: kinematic effects of speed and posture and their relevance to the sprawling-to-erect paradigm,” The Journal of experimental biology, vol. 201, no. 18, pp. 2559–2574, 1998.
  10. W. Wang, A. Ji, P. Manoonpong, H. Shen, J. Hu, Z. Dai, and Z. Yu, “Lateral undulation of the flexible spine of sprawling posture vertebrates,” Journal of Comparative Physiology A, vol. 204, pp. 707–719, 2018.
  11. “Alligator behavior page 6g: On land; walking and basking 7.” http://www.rickubis.com/rick/gatr6g.html.
  12. “Alligators in virginia.” http://www.virginiaplaces.org/natural/.
  13. S. H. Derrouaoui, Y. Bouzid, and M. Guiatni, “Pso based optimal gain scheduling backstepping flight controller design for a transformable quadrotor,” Journal of Intelligent & Robotic Systems, vol. 102, no. 3, p. 67, 2021.
  14. J. Kim and C. Lee, “Variable transformation shapes of single-tracked mechanism for a rescue robot,” in 2007 International Conference on Control, Automation and Systems, pp. 1057–1061, IEEE, 2007.
  15. S. Kim, S. Ryu, J. Won, H. S. Kim, and T. Seo, “2-dimensional dynamic analysis of inverted pendulum robot with transformable wheel for overcoming steps,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 921–927, 2021.
  16. J.-J. Chou and L.-S. Yang, “Innovative design of a claw-wheel transformable robot,” in 2013 IEEE International Conference on Robotics and Automation, pp. 1337–1342, IEEE, 2013.
  17. G.-n. Li, M. Zeng, Y. Ma, Q. Li, and W.-k. Xu, “Design of double-body car-snake hybrid transformable robot,” in 2020 39th Chinese Control Conference (CCC), pp. 3881–3886, IEEE, 2020.
  18. Y. Ozkan-Aydin and D. I. Goldman, “Self-reconfigurable multilegged robot swarms collectively accomplish challenging terradynamic tasks,” Science Robotics, vol. 6, no. 56, p. eabf1628, 2021.
  19. Z. Song, Z. Luo, G. Wei, and J. Shang, “A portable six-wheeled mobile robot with reconfigurable body and self-adaptable obstacle-climbing mechanisms,” Journal of Mechanisms and Robotics, vol. 14, no. 5, p. 051010, 2022.
  20. C. Zheng, S. Sane, K. Lee, V. Kalyanram, and K. Lee, “α𝛼\alphaitalic_α-waltr: Adaptive wheel-and-leg transformable robot for versatile multiterrain locomotion,” IEEE Transactions on Robotics, 2022.
  21. O. Simhon, Z. Karni, S. Berman, and D. Zarrouk, “Overcoming obstacles with a reconfigurable robot using deep reinforcement learning based on a mechanical work-energy reward function,” IEEE Access, vol. 11, pp. 47681–47689, 2023.
  22. B. W. Mulvey, T. D. Lalitharatne, and T. Nanayakkara, “Deformobot: A bio-inspired deformable mobile robot for navigation among obstacles,” IEEE Robotics and Automation Letters, vol. 8, no. 6, pp. 3828–3835, 2023.
  23. D. Zambrano, M. Cianchetti, C. Laschi, H. Hauser, R. Füchslin, and R. Pfeifer, “The morphological computation principles as a new paradigm for robotic design,” Opinions and outlooks on morphological computation, pp. 214–225, 2014.
  24. S. Kim, C. Laschi, and B. Trimmer, “Soft robotics: a bioinspired evolution in robotics,” Trends in biotechnology, vol. 31, no. 5, pp. 287–294, 2013.
  25. H. Jiang, G. Xu, W. Zeng, and F. Gao, “Design and kinematic modeling of a passively-actively transformable mobile robot,” Mechanism and Machine Theory, vol. 142, p. 103591, 2019.
  26. X. Liang, M. Xu, L. Xu, P. Liu, X. Ren, Z. Kong, J. Yang, and S. Zhang, “The amphihex: A novel amphibious robot with transformable leg-flipper composite propulsion mechanism,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3667–3672, IEEE, 2012.
  27. R. Baines, S. Freeman, F. Fish, and R. Kramer-Bottiglio, “Variable stiffness morphing limb for amphibious legged robots inspired by chelonian environmental adaptations,” Bioinspiration & Biomimetics, vol. 15, no. 2, p. 025002, 2020.
  28. R. Buchanan, T. Bandyopadhyay, M. Bjelonic, L. Wellhausen, M. Hutter, and N. Kottege, “Walking posture adaptation for legged robot navigation in confined spaces,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 2148–2155, 2019.
  29. B. Chong, Y. O. Aydin, C. Gong, G. Sartoretti, Y. Wu, J. M. Rieser, H. Xing, P. E. Schiebel, J. W. Rankin, K. B. Michel, et al., “Coordination of lateral body bending and leg movements for sprawled posture quadrupedal locomotion,” The International Journal of Robotics Research, vol. 40, no. 4-5, pp. 747–763, 2021.
  30. J. Qiu, A. Ji, K. Zhu, Q. Han, W. Wang, Q. Qi, and G. Chen, “A gecko-inspired robot with a flexible spine driven by shape memory alloy springs,” Soft Robotics, 2023.
  31. W. Haomachai, D. Shao, W. Wang, A. Ji, Z. Dai, and P. Manoonpong, “Lateral undulation of the bendable body of a gecko-inspired robot for energy-efficient inclined surface climbing,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7917–7924, 2021.
  32. A. Spröwitz, A. Tuleu, M. Vespignani, M. Ajallooeian, E. Badri, and A. J. Ijspeert, “Towards dynamic trot gait locomotion: Design, control, and experiments with cheetah-cub, a compliant quadruped robot,” The International Journal of Robotics Research, vol. 32, no. 8, pp. 932–950, 2013.
  33. M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Learning, planning, and control for quadruped locomotion over challenging terrain,” The International Journal of Robotics Research, vol. 30, no. 2, pp. 236–258, 2011.
  34. S. Seok, A. Wang, M. Y. Chuah, D. J. Hyun, J. Lee, D. M. Otten, J. H. Lang, and S. Kim, “Design principles for energy-efficient legged locomotion and implementation on the mit cheetah robot,” Ieee/asme transactions on mechatronics, vol. 20, no. 3, pp. 1117–1129, 2014.
  35. U. Saranli, M. Buehler, and D. E. Koditschek, “Rhex: A simple and highly mobile hexapod robot,” The International Journal of Robotics Research, vol. 20, no. 7, pp. 616–631, 2001.
  36. M. Gor, P. M. Pathak, A. Samantaray, K. Alam, P. Kumar, D. Anand, P. Vijay, R. Sarkar, J. Yang, and S. Kwak, “Development of a compliant legged quadruped robot,” Sādhanā, vol. 43, pp. 1–18, 2018.
  37. Y. Ansari, A. L. Shoushtari, V. Cacucciolo, M. Cianchetti, and C. Laschi, “Dynamic walking with a soft limb robot,” in Biomimetic and Biohybrid Systems: 4th International Conference, Living Machines 2015, Barcelona, Spain, July 28-31, 2015, Proceedings 4, pp. 13–25, Springer, 2015.
  38. I. Juárez-Campos, D. A. Núñez-Altamirano, L. Márquez-Pérez, L. Romero-Muñoz, M. E. Juárez-Campos, and B. Juárez-Campos, “Bioinspired sprawling robotic leg and a path-planning procedure,” International Journal of Advanced Robotic Systems, vol. 15, no. 1, p. 1729881418759888, 2018.
  39. D. Li, Z. Zhang, J. S. Dai, and J. M. McCarthy, “Configuration synthesis of metamorphic mechanisms based on characteristic incidence matrix,” in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 44106, pp. 943–952, 2010.
  40. Oxford University Press New York, 2003.
  41. R. Altendorfer, N. Moore, H. Komsuoglu, M. Buehler, H. Brown, D. McMordie, U. Saranli, R. Full, and D. E. Koditschek, “Rhex: A biologically inspired hexapod runner,” Autonomous Robots, vol. 11, pp. 207–213, 2001.
  42. A. Vina and A. Barrientos, “C-legged hexapod robot design guidelines based on energy analysis,” Applied Sciences, vol. 11, no. 6, p. 2513, 2021.
  43. “Robotis dynamixel sdk.” https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_sdk/library_setup/matlab_windows/. Accessed: 2022-12-15.
  44. R. B. McGhee and A. A. Frank, “On the stability properties of quadruped creeping gaits,” Mathematical Biosciences, vol. 3, pp. 331–351, 1968.
  45. M. Hildebrand, “Symmetrical gaits of horses: Gaits can be expressed numerically and analyzed graphically to reveal their nature and relationships.,” Science, vol. 150, no. 3697, pp. 701–708, 1965.
  46. R. Tomovic, “A general theoretical model of creeping displacement,” Cybernetica, vol. 4, no. 2, 1961.
  47. J. Gray, “Studies in the mechanics of the tetrapod skeleton,” Journal of Experimental Biology, vol. 20, no. 2, pp. 88–116, 1944.
  48. M. Hildebrand, “The adaptive significance of tetrapod gait selection,” American Zoologist, vol. 20, no. 1, pp. 255–267, 1980.
  49. M. Hildebrand, “The quadrupedal gaits of vertebrates,” Bioscience, vol. 39, no. 11, p. 766, 1989.
  50. R. B. McGhee, “Some finite state aspects of legged locomotion,” Mathematical Biosciences, vol. 2, no. 1-2, pp. 67–84, 1968.
  51. J. Buckley, N. Chikere, and Y. Ozkan-Aydin, “The effect of tail stiffness on a sprawling quadruped locomotion,” Frontiers in Robotics and AI, vol. 10, p. 1198749, 2023.

Summary

We haven't generated a summary for this paper yet.