Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploration and Comparison of Deep Learning Architectures to Predict Brain Response to Realistic Pictures (2309.09983v1)

Published 11 Sep 2023 in q-bio.NC, cs.AI, cs.CV, cs.HC, cs.LG, and eess.SP

Abstract: We present an exploration of machine learning architectures for predicting brain responses to realistic images on occasion of the Algonauts Challenge 2023. Our research involved extensive experimentation with various pretrained models. Initially, we employed simpler models to predict brain activity but gradually introduced more complex architectures utilizing available data and embeddings generated by large-scale pre-trained models. We encountered typical difficulties related to machine learning problems, e.g. regularization and overfitting, as well as issues specific to the challenge, such as difficulty in combining multiple input encodings, as well as the high dimensionality, unclear structure, and noisy nature of the output. To overcome these issues we tested single edge 3D position-based, multi-region of interest (ROI) and hemisphere predictor models, but we found that employing multiple simple models, each dedicated to a ROI in each hemisphere of the brain of each subject, yielded the best results - a single fully connected linear layer with image embeddings generated by CLIP as input. While we surpassed the challenge baseline, our results fell short of establishing a robust association with the data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.