Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AMuRD: Annotated Arabic-English Receipt Dataset for Key Information Extraction and Classification (2309.09800v3)

Published 18 Sep 2023 in cs.CL

Abstract: The extraction of key information from receipts is a complex task that involves the recognition and extraction of text from scanned receipts. This process is crucial as it enables the retrieval of essential content and organizing it into structured documents for easy access and analysis. In this paper, we present AMuRD, a novel multilingual human-annotated dataset specifically designed for information extraction from receipts. This dataset comprises $47,720$ samples and addresses the key challenges in information extraction and item classification - the two critical aspects of data analysis in the retail industry. Each sample includes annotations for item names and attributes such as price, brand, and more. This detailed annotation facilitates a comprehensive understanding of each item on the receipt. Furthermore, the dataset provides classification into $44$ distinct product categories. This classification feature allows for a more organized and efficient analysis of the items, enhancing the usability of the dataset for various applications. In our study, we evaluated various LLM architectures, e.g., by fine-tuning LLaMA models on the AMuRD dataset. Our approach yielded exceptional results, with an F1 score of 97.43\% and accuracy of 94.99\% in information extraction and classification, and an even higher F1 score of 98.51\% and accuracy of 97.06\% observed in specific tasks. The dataset and code are publicly accessible for further researchhttps://github.com/Update-For-Integrated-Business-AI/AMuRD.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com