2000 character limit reached
On a conjecture of Ramírez Alfonsín and Skałba II (2309.09796v2)
Published 18 Sep 2023 in math.NT
Abstract: Let $1<c<d$ be two relatively prime integers and $g_{c,d}=cd-c-d$. We confirm, by employing the Hardy--Littlewood method, a 2020 conjecture of Ram\'{\i}rez Alfons\'{\i}n and Ska{\l}ba which states that $$#\left{p\le g_{c,d}:p\in \mathcal{P}, ~p=cx+dy,~x,y\in \mathbb{Z}{\geqslant0}\right}\sim \frac{1}{2}\pi\left(g{c,d}\right) \quad (\text{as}~c\rightarrow\infty),$$ where $\mathcal{P}$ is the set of primes, $\mathbb{Z}_{\geqslant0}$ is the set of nonnegative integers and $\pi(t)$ denotes the number of primes not exceeding $t$.