An Autonomous Vision-Based Algorithm for Interplanetary Navigation (2309.09590v3)
Abstract: The surge of deep-space probes makes it unsustainable to navigate them with standard radiometric tracking. Self-driving interplanetary satellites represent a solution to this problem. In this work, a full vision-based navigation algorithm is built by combining an orbit determination method with an image processing pipeline suitable for interplanetary transfers of autonomous platforms. To increase the computational efficiency of the algorithm, a non-dimensional extended Kalman filter is selected as state estimator, fed by the positions of the planets extracted from deep-space images. An enhancement of the estimation accuracy is performed by applying an optimal strategy to select the best pair of planets to track. Moreover, a novel analytical measurement model for deep-space navigation is developed providing a first-order approximation of the light-aberration and light-time effects. Algorithm performance is tested on a high-fidelity, Earth--Mars interplanetary transfer, showing the algorithm applicability for deep-space navigation.
- Wang, Y., Zheng, W., Sun, S., and Li, L., “X-ray Pulsar-Based Navigation Using Time-Differenced Measurement,” Aerospace Science and Technology, Vol. 36, July 2014, pp. 27–35. https://doi.org/10.1016/j.ast.2014.03.007.
- Malgarini, A., Franzese, V., and Topputo, F., “Application of Pulsar-Based Navigation for Deep-Space CubeSats,” Aerospace, Vol. 10, No. 8, 2023, p. 695. https://doi.org/10.3390/aerospace10080695.
- https://doi.org/10.1002/0471728454.ch5.
- Henry, S., and Christian, J. A., “Absolute Triangulation Algorithms for Space Exploration,” Journal of Guidance, Control, and Dynamics, Vol. 46, No. 1, 2023, pp. 21–46. https://doi.org/10.2514/1.G006989.
- Maass, B., Woicke, S., Oliveira, W. M., Razgus, B., and Krüger, H., “Crater Navigation System for Autonomous Precision Landing on the Moon,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 8, 2020, pp. 1414–1431. https://doi.org/10.2514/1.G004850.
- Turan, E., Speretta, S., and Gill, E., “Autonomous Navigation for Deep-Space Small Satellites: Scientific and Technological Advances,” Acta Astronautica, Vol. 193, April 2022, pp. 56–74. https://doi.org/10.1016/j.actaastro.2021.12.030.
- Bhaskaran, S., Riedel, J., Synnott, S., and Wang, T., “The Deep Space 1 Autonomous Navigation System-A Post-Flight Analysis,” Astrodynamics Specialist Conference, AIAA, Denver, CO, USA, 2000. https://doi.org/10.2514/6.2000-3935.
- Franzese, V., Topputo, F., Ankersen, F., and Walker, R., “Deep-Space Optical Navigation for M-ARGO Mission,” The Journal of the Astronautical Sciences, Vol. 68, No. 4, 2021, pp. 1034–1055. https://doi.org/10.1007/s40295-021-00286-9.
- Andreis, E., Franzese, V., and Topputo, F., “Onboard Orbit Determination for Deep-Space CubeSats,” Journal of Guidance, Control, and Dynamics, Vol. 45, No. 8, 2022, pp. 1466–1480. 10.2514/1.G006294.
- Merisio, G., and Topputo, F., “Present-Day Model of Lunar Meteoroids and Their Impact Flashes for LUMIO Mission,” Icarus, Vol. 389, January 2023, p. 115180. https://doi.org/10.1016/j.icarus.2022.115180.
- Panicucci, P., Lebreton, J., Brochard, R., Zenou, E., and Delpech, M., “Shadow-Robust Silhouette Reconstruction for Small-Body Applications,” Journal of Spacecraft and Rockets, Vol. 60, No. 3, 2023, pp. 812–828. https://doi.org/10.2514/1.A35444.
- Panicucci, P., Lebreton, J., Brochard, R., Zenou, E., and Delpech, M., “Vision-based estimation of small body rotational state,” Acta Astronautica, Vol. 213, December 2023, pp. 177–196. https://doi.org/10.1016/j.actaastro.2023.08.046.
- Pugliatti, M., Franzese, V., and Topputo, F., “Data-Driven Image Processing for Onboard Optical Navigation Around a Binary Asteroid,” Journal of Spacecraft and Rockets, Vol. 59, No. 3, 2022, pp. 943–959. https://doi.org/10.2514/1.A35213.
- McCarthy, L. K., Adam, C. D., Leonard, J. M., Antresian, P. G., Nelson, D., Sahr, E., Pelgrift, J., Lessac-Chenen, E. J., Geeraert, J., and Lauretta, D., “OSIRIS-REx Landmark Optical Navigation Performance During Orbital and Close Proximity Operations at Asteroid Bennu,” AIAA SCITECH 2022 Forum, AIAA, San Diego, CA & Virtual, January 2022. 10.2514/6.2022-2520.
- Leroy, B., Medioni, G., Johnson, E., and Matthies, L., “Crater detection for autonomous landing on asteroids,” Image and Vision Computing, Vol. 19, No. 11, 2001, pp. 787–792. https://doi.org/10.1016/S0262-8856(00)00111-6.
- Bhaskaran, S., “Autonomous Navigation for Deep Space Missions,” SpaceOps 2012, AIAA, Stockholm, Sweden, June 2012. https://doi.org/10.2514/6.2012-1267135.
- 10.3847/PSJ/ac5183.
- Topputo, F., Wang, Y., Giordano, C., Franzese, V., Goldberg, H., Perez-Lissi, F., and Walker, R., “Envelop of Reachable Asteroids by M-ARGO CubeSat,” Advances in Space Research, Vol. 67, No. 12, 2021, pp. 4193–4221. https://doi.org/10.1016/j.asr.2021.02.031.
- Karimi, R. R., and Mortari, D., “Interplanetary Autonomous Navigation Using Visible Planets,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 6, 2015, pp. 1151–1156. https://doi.org/10.2514/1.G000575.
- Casini, S., Cervone, A., Monna, B., and Gill, E., “On line-of-sight navigation for deep-space applications: A performance analysis,” Advances in Space Research, Vol. 72, No. 7, 2023, pp. 2994–3008. https://doi.org/10.1016/j.asr.2022.12.017.
- Stastny, N. B., and Geller, D. K., “Autonomous Optical Navigation at Jupiter: a Linear Covariance Analysis,” Journal of Spacecraft and Rockets, Vol. 45, No. 2, 2008, pp. 290–298. https://doi.org/10.2514/1.28451.
- Bhaskaran, S., “Autonomous Optical-Only Navigation for Deep Space Missions,” ASCEND 2020, AIAA, Virtual Event, November 16-18, 2020. https://doi.org/10.2514/6.2020-4139.
- Vaughan, R., Riedel, J., Davis, R., OWEN, W., JR, and Synnott, S., “Optical Navigation for the Galileo Gaspra Encounter,” Astrodynamics Conference, AIAA, Hilton Head Island, SC, U.S.A., August 1992. 10.2514/6.1992-4522.
- Andreis, E., Panicucci, P., Franzese, V., and Topputo, F., “A Robust Image Processing Pipeline for Planets Line-Of-Sight Extraction for Deep-Space Autonomous Cubesats Navigation,” 44th AAS Guidance, Navigation and Control Conference, AAS, Breckenridge, CO, USA, February 2022.
- Broschart, S. B., Bradley, N., and Bhaskaran, S., “Kinematic Approximation of Position Accuracy Achieved Using Optical Observations of Distant Asteroids,” Journal of Spacecraft and Rockets, Vol. 56, No. 5, 2019, pp. 1383–1392. 10.2514/1.A34354.
- Franzese, V., and Topputo, F., “Celestial Bodies Far-Range Detection with Deep-Space CubeSats,” Sensors, Vol. 23, No. 9, 2023, p. 4544. https://doi.org/10.3390/s23094544.
- Franzese, V., and Topputo, F., “Optimal Beacons Selection for Deep-Space Optical Navigation,” The Journal of the Astronautical Sciences, Vol. 67, No. 4, 2020, pp. 1775–1792. https://doi.org/10.1007/s40295-020-00242-z.
- Lai, Y., Liu, J., Ding, Y., Gu, D., and Yi, D., “Attitude aberration correction for space technology experiment and climate exploration (STECE) satellite star tracker,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 229, No. 6, 2015, pp. 1142–1153. 10.1177/0954410014547440.
- Jørgensen, J. L., Denver, T., Betto, M., and den Braembussche, P. V., “The PROBA satellite star tracker performance,” Acta Astronautica, Vol. 56, No. 1, 2005, pp. 153–159. https://doi.org/10.1016/j.actaastro.2004.09.011.
- Kazemi, L., Enright, J., and Dzamba, T., “Improving Star Tracker Centroiding Performance in Dynamic Imaging Conditions,” 2015 IEEE Aerospace Conference, IEEE, Big Sky, MT, USA, 2015, pp. 1–8. 10.1109/AERO.2015.7119226.
- Wan, X., Wang, G., Wei, X., Li, J., and Zhang, G., “Star Centroiding Based on Dast Gaussian Fitting for Star Sensors,” Sensors, Vol. 18, No. 9, 2018, p. 2836. 10.3390/s18092836.
- Vyas, A., Roopashree, M., Prasad, B., and Vyas, A., “Performance of Centroiding Algorithms at Low Light Level Conditions in Adaptive Optics,” 2009 International Conference on Advances in Recent Technologies in Communication and Computing, IEEE, Kottayam, India, October 2009, pp. 366–369. 10.1109/ARTCom.2009.30.
- Mortari, D., Samaan, M. A., Bruccoleri, C., and Junkins, J. L., “The Pyramid Star Identification Technique,” Navigation, Vol. 51, No. 3, 2004, pp. 171–183. https://doi.org/10.1002/j.2161-4296.2004.tb00349.x.
- Bentley, J. L., and Sedgewick, R., “Fast algorithms for sorting and searching strings,” Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, USA, 1997, p. 360–369.
- Mortari, D., and Neta, B., “K-vector range searching techniques,” Adv. Astronaut. Sci, Vol. 105, No. 1, 2000, pp. 449–464. URL https://hdl.handle.net/10945/41061.
- Rijlaarsdam, D., Yous, H., Byrne, J., Oddenino, D., Furano, G., and Moloney, D., “A Survey of Lost-in-Space Star Identification Algorithms Since 2009,” Sensors, Vol. 20, No. 9, 2020, p. 2579. 10.3390/s20092579.
- https://doi.org/10.1007/978-1-4939-0802-8.
- Fischler, M. A., and Bolles, R. C., “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography,” Communications of the ACM, Vol. 24, No. 6, 1981, pp. 381–395. 10.1145/358669.358692.
- Jean, I., Ng, A., and Misra, A. K., “Impact of Solar Radiation Pressure Modeling on Orbital Dynamics in the Vicinity of Binary Asteroids,” Acta Astronautica, Vol. 165, December 2019, pp. 167–183. https://doi.org/10.1016/j.actaastro.2019.09.003.
- Mortari, D., and Conway, D., “Single-Point Position Estimation in Interplanetary Trajectories Using Star Trackers,” Celestial Mechanics and Dynamical Astronomy, Vol. 128, No. 1, 2017, pp. 115–130. https://doi.org/10.1007/s10569-016-9738-4.
- Shuster, M. D., “Stellar Aberration and Parallax: A Tutorial,” The Journal of the astronautical sciences, Vol. 51, August 2003, pp. 477–494. https://doi.org/10.1007/BF03546295.
- Christian, J. A., “StarNAV: Autonomous Optical Navigation of a Spacecraft by the Relativistic Perturbation of Starlight,” Sensors, Vol. 19, No. 19, 2019, p. 4064. https://doi.org/10.3390/s19194064.
- Owen, W. M. J., “Methods of optical navigation,” Tech. Rep. 11-0589, 2011. 2014/41942.
- Liu, H., Shah, S., and Jiang, W., “On-line Outlier Detection and Data Cleaning,” Computers & chemical engineering, Vol. 28, No. 9, 2004, pp. 1635–1647. https://doi.org/10.1016/j.compchemeng.2004.01.009.
- Bella, S. A., Andreis, E., Franzese, V., Panicucci, P., and Topputo, F., “Line-of-Sight Extraction Algorithm for Deep-Space Autonomous Navigation,” 2021 AAS/AIAA Astrodynamics Specialist Conference, AAS/AIAA, Virtual, August 2021.
- Mamich, R., Kucharski, D., Zanetti, R., Jah, M. K., Silva, E. D., Griesbach, J. D., and Fine, J., “Navigation Using Serendipitous Star-Tracker Observations And On-Board Data Processing,” 44th AAS Guidance, Navigation and Control Conference, AAS, Breckenridge, CO, U.S.A, February 2022.
- Merisio, G., Topputo, F., et al., “Characterization of Ballistic Capture Corridors Aiming at Autonomous Ballistic Capture at Mars,” 2021 AAS/AIAA Astrodynamics Specialist Conference, AAS/AIAA, Virtual, August 2022.
- Yárnoz, D. G., Jehn, R., and Croon, M., “Interplanetary navigation along the low-thrust trajectory of BepiColombo,” Acta Astronautica, Vol. 59, No. 1-5, 2006, pp. 284–293. https://doi.org/10.1016/j.actaastro.2006.02.028.
- Krause, M., Thrasher, A., Soni, P., Smego, L., Isaac, R., Nolan, J., Pledger, M., Lightsey, E. G., Ready, W. J., and Christian, J., “LONEStar: The Lunar Flashlight Optical Navigation Experiment,” arXiv preprint arXiv:2401.12198, January 2024.
- https://doi.org/10.3390/s22239333.
- Pugliatti, M., Franzese, V., Panicucci, P., and Topputo, F., “TINYV3RSE: The DART Vision-Based Navigation Test-bench,” AIAA Scitech 2022 Forum, AIAA, San Diego, CA & Virtual, January 2022, p. 1193. 10.2514/6.2022-1193.
- Andreis, E., Panicucci, P., Ornati, F., and Topputo, F., “Towards Validation and Verification of Autonomous Vision-Based Navigation for Interplanetary Spacecraft,” 12th International Conference on Guidance, Navigation & Control Systems (GNC), June 2023, pp. 1–14. 10.5270/esa-gnc-icatt-2023-112.
- Ornati, F., Panicucci, P., Andreis, E., and Topputo, F., “RETINA: a highly-versatile optical facility for camera-in-the-loop testing of spaceborne Vision-Based Sensors,” 46th Annual AAS Guidance, Navigation and Control Conference, AAS, Breckenridge, CO, USA, February 2024.
- Di Domenico, G., Andreis, E., Carlo Morelli, A., Merisio, G., Franzese, V., Giordano, C., Morselli, A., Panicucci, P., Ferrari, F., and Topputo, F., “The ERC-Funded EXTREMA Project: Achieving Self-Driving Interplanetary CubeSats,” Modeling and Optimization in Space Engineering: New Concepts and Approaches, Springer New York, 2022, pp. 167–199. https://doi.org/10.1007/978-3-031-24812-2_6.
- Di Domenico, G., Andreis, E., Morelli, A. C., Merisio, G., Franzese, V., Giordano, C., Morselli, A., Panicucci, P., Ferrari, F., Topputo, F., et al., “Toward self-driving interplanetary CubeSats: The ERC-funded project EXTREMA,” 72nd International Astronautical Congress, IAF, Dubai, UAE, October 2021, pp. 1–11.