Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explainable Offline-Online Training of Neural Networks for Parameterizations: A 1D Gravity Wave-QBO Testbed in the Small-data Regime (2309.09024v1)

Published 16 Sep 2023 in physics.ao-ph, physics.comp-ph, and physics.data-an

Abstract: There are different strategies for training neural networks (NNs) as subgrid-scale parameterizations. Here, we use a 1D model of the quasi-biennial oscillation (QBO) and gravity wave (GW) parameterizations as testbeds. A 12-layer convolutional NN that predicts GW forcings for given wind profiles, when trained offline in a big-data regime (100-years), produces realistic QBOs once coupled to the 1D model. In contrast, offline training of this NN in a small-data regime (18-months) yields unrealistic QBOs. However, online re-training of just two layers of this NN using ensemble Kalman inversion and only time-averaged QBO statistics leads to parameterizations that yield realistic QBOs. Fourier analysis of these three NNs' kernels suggests why/how re-training works and reveals that these NNs primarily learn low-pass, high-pass, and a combination of band-pass filters, consistent with the importance of both local and non-local dynamics in GW propagation/dissipation. These findings/strategies apply to data-driven parameterizations of other climate processes generally.

Citations (16)

Summary

We haven't generated a summary for this paper yet.