Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modelling Irrational Behaviour of Residential End Users using Non-Stationary Gaussian Processes (2309.09012v2)

Published 16 Sep 2023 in eess.SY, cs.IT, cs.SY, and math.IT

Abstract: Demand response (DR) plays a critical role in ensuring efficient electricity consumption and optimal use of network assets. Yet, existing DR models often overlook a crucial element, the irrational behaviour of electricity end users. In this work, we propose a price-responsive model that incorporates key aspects of end-user irrationality, specifically loss aversion, time inconsistency, and bounded rationality. To this end, we first develop a framework that uses Multiple Seasonal-Trend decomposition using Loess (MSTL) and non-stationary Gaussian processes to model the randomness in the electricity consumption by residential consumers. The impact of this model is then evaluated through a community battery storage (CBS) business model. Additionally, we apply a chance-constrained optimisation model for CBS operation that deals with the unpredictability of the end-user irrationality. Our simulations using real-world data show that the proposed DR model provides a more realistic estimate of end-user price-responsive behaviour when considering irrationality. Compared to a deterministic model that cannot fully take into account the irrational behaviour of end users, the chance-constrained CBS operation model yields an additional 19% revenue. Lastly, the business model reduces the electricity costs of solar end users by 11%.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. Q. Zhang and J. Li, “Demand response in electricity markets: A review,” in 2012 9th International Conference on the European Energy Market, 2012, pp. 1–8.
  2. J. S. Vardakas, N. Zorba, and C. V. Verikoukis, “A survey on demand response programs in smart grids: Pricing methods and optimization algorithms,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 152–178, 2015.
  3. S. Gyamfi, S. Krumdieck, and T. Urmee, “Residential peak electricity demand response—highlights of some behavioural issues,” Renewable and Sustainable Energy Reviews, vol. 25, pp. 71–77, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032113002578
  4. N. T. Dinh, S. Karimi-Arpanahi, S. A. Pourmousavi, M. Guo, and J. A. R. Liisberg, “Cost-effective community battery sizing and operation within a local market framework,” IEEE Transactions on Energy Markets, Policy and Regulation, vol. 1, no. 4, pp. 536–548, 2023.
  5. M. Yu and S. H. Hong, “A real-time demand-response algorithm for smart grids: A stackelberg game approach,” IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 879–888, 2016.
  6. L. Werner, A. Wierman, and S. H. Low, “Pricing flexibility of shiftable demand in electricity markets.”   New York, NY, USA: Association for Computing Machinery, 2021, p. 1–14. [Online]. Available: https://doi.org/10.1145/3447555.3464847
  7. S. M. Sirin and M. S. Gonul, “Behavioral aspects of regulation: A discussion on switching and demand response in turkish electricity market,” Energy Policy, vol. 97, pp. 591–602, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301421516304219
  8. E. R. Frederiks, K. Stenner, and E. V. Hobman, “Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 1385–1394, 2015.
  9. Ausgrid. (2023) Community batteries. [Online]. Available: https://www.ausgrid.com.au/In-your-community/Community-Batteries
  10. ARENA. (2023) Community batteries funding round 1. [Online]. Available: https://arena.gov.au/funding/community-batteries-round-1/
  11. A. E. Regulator. (2023) Tariff trials. [Online]. Available: https://www.aer.gov.au/networks-pipelines/network-tariff-reform/tariff-trials
  12. N. T. Dinh, S. A. Pourmousavi, S. Karimi-Arpanahi, Y. P. S. Kumar, M. Guo, D. Abbott, and J. A. R. Liisberg, “Optimal sizing and scheduling of community battery storage within a local market,” in Proceedings of the Thirteenth ACM International Conference on Future Energy Systems, ser. e-Energy ’22.   New York, NY, USA: Association for Computing Machinery, 2022, p. 34–46. [Online]. Available: https://doi.org/10.1145/3538637.3538837
  13. C. E. Council. (2023) Clean energy update. [Online]. Available: https://www.agl.com.au/content/dam/digital/agl/documents/about-agl/how-we-source-energy/coopers-gap-wind-farm/cec-clean-energy-update-power-prices.pdf
  14. J. Lemos-Vinasco, P. Bacher, and J. K. Møller, “Probabilistic load forecasting considering temporal correlation: Online models for the prediction of households’ electrical load,” Applied Energy, vol. 303, p. 117594, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261921009685
  15. J. Lemos-Vinasco, A. Schledorn, S. A. Pourmousavi, and D. Guericke, “Economic evaluation of stochastic home energy management systems in a realistic rolling horizon setting,” 2022.
  16. A. Electric. (2023) Amber electric. [Online]. Available: https://www.amber.com.au/
  17. X. Jiang, C. Sun, L. Cao, L. Ngai-Fong, and K. H. Loo, “Peer-to-peer energy trading with energy path conflict management in energy local area network,” IEEE Transactions on Smart Grid, vol. 13, no. 3, pp. 2269–2278, 2022.
  18. N. C. Barberis, “Thirty years of prospect theory in economics: A review and assessment,” Journal of Economic Perspectives, vol. 27, no. 1, pp. 173–96, February 2013. [Online]. Available: https://www.aeaweb.org/articles?id=10.1257/jep.27.1.173
  19. A. M. Radoszynski, V. Dvorkin, and P. Pinson, “Accommodating bounded rationality in pricing demand response,” in 2019 IEEE Milan PowerTech, 2019, pp. 1–6.
  20. A. Marín Radoszynski and P. Pinson, “Electric demand response and bounded rationality: mean-field control for large populations of heterogeneous bounded-rational agents,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 379, no. 2202, p. 20190429, 2021. [Online]. Available: https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2019.0429
  21. C. Wilson and H. Dowlatabadi, “Models of decision making and residential energy use,” Annual Review of Environment and Resources, vol. 32, no. 1, pp. 169–203, 2007. [Online]. Available: https://doi.org/10.1146/annurev.energy.32.053006.141137
  22. P. Steel, “The nature of procrastination: A meta-analytic and theoretical review of quintessential self-regulatory failure,” Psychological Bulletin, vol. 133, no. 1, pp. 65–94, 2007. [Online]. Available: https://doi.org/10.1037/0033-2909.133.1.65
  23. H. Allcott and S. Mullainathan, “Behavior and energy policy,” Science, vol. 327, no. 5970, pp. 1204–1205, 2010. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.1180775
  24. S. C. Lillemo, “Measuring the effect of procrastination and environmental awareness on households’ energy-saving behaviours: An empirical approach,” Energy Policy, vol. 66, pp. 249–256, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301421513011026
  25. K. Bandara, R. J. Hyndman, and C. Bergmeir, “Mstl: A seasonal-trend decomposition algorithm for time series with multiple seasonal patterns,” 2021.
  26. M. M. Noack and J. A. Sethian, “Advanced stationary and nonstationary kernel designs for domain-aware gaussian processes,” Communications in Applied Mathematics and Computational Science, vol. 17, no. 1, pp. 131–156, oct 2022. [Online]. Available: https://doi.org/10.2140%2Fcamcos.2022.17.131
  27. K. Baker, G. Hug, and X. Li, “Energy storage sizing taking into account forecast uncertainties and receding horizon operation,” IEEE Transactions on Sustainable Energy, vol. 8, no. 1, pp. 331–340, 2017.
  28. S. Su, Z. Li, X. Jin, K. Yamashita, M. Xia, and Q. Chen, “Bi-level energy management and pricing for community energy retailer incorporating smart buildings based on chance-constrained programming,” International Journal of Electrical Power & Energy Systems, vol. 138, p. 107894, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061521011078
  29. F. Marasciuolo, C. Orozco, M. Dicorato, A. Borghetti, and G. Forte, “Chance-constrained calculation of the reserve service provided by ev charging station clusters in energy communities,” IEEE Transactions on Industry Applications, vol. 59, no. 4, pp. 4700–4709, 2023.
  30. A. P. Institute. (2022) Australia leads the world in pv installation rate. [Online]. Available: https://apvi.org.au/wp-content/uploads/2022/08/APVI-Media-Release-2022-PV-in-Australia.pdf
  31. SAPN. (2023) Fixed v flexible. [Online]. Available: https://www.sapowernetworks.com.au/industry/flexible-exports/fixed-v-flexible/
  32. ——. (2023) Pricing & tariffs. [Online]. Available: https://www.sapowernetworks.com.au/your-power/billing/pricing-tariffs/
  33. Ausgrid. (2023) Ausgrid sub-threshold tariffs 2022-23. [Online]. Available: aer.gov.au/system/files/Ausgrid%20-%20Tariff%20trial%20notification%20-%202022-23_0.pdf
  34. Z. Csereklyei, “Price and income elasticities of residential and industrial electricity demand in the european union,” Energy Policy, vol. 137, p. 111079, 2020.
  35. ARENA. (2023) The generator operations series: Negative pricing and bidding behaviour on the nem. [Online]. Available: https://arena.gov.au/knowledge-bank/genops-three-negative-pricing-and-bidding-behaviour-on-the-nem/
  36. C. Cornell, N. T. Dinh, and S. A. Pourmousavi, “A probabilistic forecast methodology for volatile electricity prices in the australian national electricity market,” International Journal of Forecasting, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169207023001358
  37. Y. P. S. Kumar, R. Yuan, N. T. Dinh, and S. A. Pourmousavi, “Optimal activity and battery scheduling algorithm using load and solar generation forecasts,” in 2022 32nd Australasian Universities Power Engineering Conference (AUPEC), 2022, pp. 1–6.
  38. S. A. P. Kani, P. Wild, and T. K. Saha, “Improving predictability of renewable generation through optimal battery sizing,” IEEE Transactions on Sustainable Energy, vol. 11, no. 1, pp. 37–47, 2020.
  39. F. J. M. Jr., “The kolmogorov-smirnov test for goodness of fit,” Journal of the American Statistical Association, vol. 46, no. 253, pp. 68–78, 1951.
  40. P. Mishra, C. Pandey, U. Singh, A. Gupta, C. Sahu, and A. Keshri, “Descriptive statistics and normality tests for statistical data,” Annals of Cardiac Anaesthesia, vol. 22, no. 1, pp. 67–72, Jan 2019.
  41. J. Görtler, R. Kehlbeck, and O. Deussen, “A visual exploration of gaussian processes,” Distill, 2019, https://distill.pub/2019/visual-exploration-gaussian-processes.
  42. Ausgrid. (2012) Solar home electricity data. [Online]. Available: https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/Solar-home-electricity-data
  43. AEMO. (2023) Aemo. [Online]. Available: https://aemo.com.au/
  44. Ausgrid. (2022) Network prices. [Online]. Available: https://www.ausgrid.com.au/Industry/Regulation/Network-prices
  45. CSIRO, “Gencost 2021-22,” Tech. Rep., 2022. [Online]. Available: https://www.csiro.au/-/media/News-releases/2022/GenCost-2022/GenCost2021-22Final_20220708.pdf
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com