Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computational Enhancement for Day-Ahead Energy Scheduling with Sparse Neural Network-based Battery Degradation Model (2309.08853v1)

Published 16 Sep 2023 in eess.SY and cs.SY

Abstract: Battery energy storage systems (BESS) play a pivotal role in future power systems as they contribute to achiev-ing the net-zero carbon emission objectives. The BESS systems, predominantly employing lithium-ion batteries, have been exten-sively deployed. The degradation of these batteries significantly affects system efficiency. Deep neural networks can accurately quantify the battery degradation, however, the model complexity hinders their applications in energy scheduling for various power systems at different scales. To address this issue, this paper pre-sents a novel approach, introducing a linearized sparse neural network-based battery degradation model (SNNBD), specifically tailored to quantify battery degradation based on the scheduled BESS daily operational profiles. By leveraging sparse neural networks, this approach achieves accurate degradation predic-tion while substantially reducing the complexity associated with a dense neural network model. The computational burden of inte-grating battery degradation into day-ahead energy scheduling is thus substantially alleviated. Case studies, conducted on both microgrids and bulk power grids, demonstrated the efficiency and suitability of the proposed SNNBD-integrated scheduling model that can effectively address battery degradation concerns while optimizing day-ahead energy scheduling operations.

Summary

We haven't generated a summary for this paper yet.