Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributionally Robust CVaR-Based Safety Filtering for Motion Planning in Uncertain Environments (2309.08821v1)

Published 16 Sep 2023 in cs.RO, cs.SY, and eess.SY

Abstract: Safety is a core challenge of autonomous robot motion planning, especially in the presence of dynamic and uncertain obstacles. Many recent results use learning and deep learning-based motion planners and prediction modules to predict multiple possible obstacle trajectories and generate obstacle-aware ego robot plans. However, planners that ignore the inherent uncertainties in such predictions incur collision risks and lack formal safety guarantees. In this paper, we present a computationally efficient safety filtering solution to reduce the collision risk of ego robot motion plans using multiple samples of obstacle trajectory predictions. The proposed approach reformulates the collision avoidance problem by computing safe halfspaces based on obstacle sample trajectories using distributionally robust optimization (DRO) techniques. The safe halfspaces are used in a model predictive control (MPC)-like safety filter to apply corrections to the reference ego trajectory thereby promoting safer planning. The efficacy and computational efficiency of our approach are demonstrated through numerical simulations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.