Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

i-Octree: A Fast, Lightweight, and Dynamic Octree for Proximity Search (2309.08315v2)

Published 15 Sep 2023 in cs.RO

Abstract: Establishing the correspondences between newly acquired points and historically accumulated data (i.e., map) through nearest neighbors search is crucial in numerous robotic applications. However, static tree data structures are inadequate to handle large and dynamically growing maps in real-time. To address this issue, we present the i-Octree, a dynamic octree data structure that supports both fast nearest neighbor search and real-time dynamic updates, such as point insertion, deletion, and on-tree down-sampling. The i-Octree is built upon a leaf-based octree and has two key features: a local spatially continuous storing strategy that allows for fast access to points while minimizing memory usage, and local on-tree updates that significantly reduce computation time compared to existing static or dynamic tree structures. The experiments show that i-Octree outperforms contemporary state-of-the-art approaches by achieving, on average, a 19% reduction in runtime on realworld open datasets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. X. Xiong, D. Munoz, J. A. Bagnell, and M. Hebert, “3-d scene analysis via sequenced predictions over points and regions,” in 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 2609–2616.
  2. J. Behley, V. Steinhage, and A. B. Cremers, “Performance of histogram descriptors for the classification of 3d laser range data in urban environments,” in 2012 IEEE International Conference on Robotics and Automation, 2012, pp. 4391–4398.
  3. N. J. Mitra and A. Nguyen, “Estimating surface normals in noisy point cloud data,” in Proceedings of the Nineteenth Annual Symposium on Computational Geometry, ser. SCG ’03.   New York, NY, USA: Association for Computing Machinery, 2003, p. 322–328. [Online]. Available: https://doi.org/10.1145/777792.777840
  4. K. Klasing, D. Wollherr, and M. Buss, “A clustering method for efficient segmentation of 3d laser data,” in 2008 IEEE International Conference on Robotics and Automation, 2008, pp. 4043–4048.
  5. J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-time.” in Robotics: Science and Systems, vol. 2, no. 9, 2014.
  6. T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 4758–4765.
  7. J. Lin and F. Zhang, “Loam livox: A fast, robust, high-precision lidar odometry and mapping package for lidars of small fov,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 3126–3131.
  8. W. Xu and F. Zhang, “Fast-lio: A fast, robust lidar-inertial odometry package by tightly-coupled iterated kalman filter,” arXiv preprint arXiv:2010.08196, 2020.
  9. W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct lidar-inertial odometry,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2053–2073, 2022.
  10. A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Proceedings of the 1984 ACM SIGMOD international conference on Management of data, 1984, pp. 47–57.
  11. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: An efficient and robust access method for points and rectangles,” in Proceedings of the 1990 ACM SIGMOD international conference on Management of data, 1990, pp. 322–331.
  12. J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.
  13. J. L. Vermeulen, A. Hillebrand, and R. Geraerts, “A comparative study of k-nearest neighbour techniques in crowd simulation,” Computer Animation and Virtual Worlds, vol. 28, no. 3-4, p. e1775, 2017.
  14. J. Elseberg, S. Magnenat, R. Siegwart, and A. Nüchter, “Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration,” Journal of Software Engineering for Robotics, vol. 3, no. 1, pp. 2–12, 2012.
  15. J. Elseberg, D. Borrmann, and A. Nüchter, “One billion points in the cloud–an octree for efficient processing of 3d laser scans,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 76, pp. 76–88, 2013.
  16. J. Behley, V. Steinhage, and A. B. Cremers, “Efficient radius neighbor search in three-dimensional point clouds,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 3625–3630.
  17. R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in 2011 IEEE international conference on robotics and automation.   IEEE, 2011, pp. 1–4.
  18. G. M. Morton, “A computer oriented geodetic data base and a new technique in file sequencing,” International Business Machines Company, New York, Tech. Rep., 1996.
  19. M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic algorithm configuration.” VISAPP (1), vol. 2, no. 331-340, p. 2, 2009.
  20. J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best matches in logarithmic expected time,” ACM Trans. Math. Softw., vol. 3, no. 3, p. 209–226, sep 1977. [Online]. Available: https://doi.org/10.1145/355744.355745
  21. T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping,” in 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS).   IEEE, 2020, pp. 5135–5142.
  22. K. Li, M. Li, and U. D. Hanebeck, “Towards high-performance solid-state-lidar-inertial odometry and mapping,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5167–5174, 2021.
  23. H. Wang, C. Wang, C.-L. Chen, and L. Xie, “F-loam: Fast lidar odometry and mapping,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 4390–4396.
  24. J. Yin, A. Li, T. Li, W. Yu, and D. Zou, “M2dgr: A multi-sensor and multi-scenario slam dataset for ground robots,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2266–2273, 2021.
  25. L. Zhang, M. Camurri, D. Wisth, and M. Fallon, “Multi-camera lidar inertial extension to the newer college dataset,” 2021.
  26. N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, “University of Michigan North Campus long-term vision and lidar dataset,” International Journal of Robotics Research, vol. 35, no. 9, pp. 1023–1035, 2015.
  27. J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of rgb-d slam systems,” in 2012 IEEE/RSJ international conference on intelligent robots and systems.   IEEE, 2012, pp. 573–580.
Citations (2)

Summary

We haven't generated a summary for this paper yet.