Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gain and Phase: Decentralized Stability Conditions for Power Electronics-Dominated Power Systems (2309.08037v2)

Published 14 Sep 2023 in eess.SY and cs.SY

Abstract: This paper proposes decentralized stability conditions for multi-converter systems based on the combination of the small gain theorem and the small phase theorem. Instead of directly computing the closed-loop dynamics, e.g., eigenvalues of the state-space matrix, or using the generalized Nyquist stability criterion, the proposed stability conditions are more scalable and computationally lighter, which aim at evaluating the closed-loop system stability by comparing the individual converter dynamics with the network dynamics in a decentralized and open-loop manner. Moreover, our approach can handle heterogeneous converters' dynamics and is suitable to analyze large-scale multi-converter power systems that contain grid-following (GFL), grid-forming (GFM) converters, and synchronous generators. Compared with other decentralized stability conditions, e.g., passivity-based stability conditions, the proposed conditions are significantly less conservative and can be generally satisfied in practice across the whole frequency range.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. F. Milano, F. Dörfler, G. Hug, D. J. Hill, and G. Verbič, “Foundations and challenges of low-inertia systems,” in 2018 power systems computation conference (PSCC).   IEEE, 2018, pp. 1–25.
  2. N. Hatziargyriou, J. Milanovic, C. Rahmann, V. Ajjarapu, C. Canizares, I. Erlich, D. Hill, I. Hiskens, I. Kamwa, B. Pal et al., “Definition and classification of power system stability–revisited & extended,” IEEE Trans. Power Systems, vol. 36, no. 4, pp. 3271–3281, 2020.
  3. N. Pogaku, M. Prodanovic, and T. C. Green, “Modeling, analysis and testing of autonomous operation of an inverter-based microgrid,” IEEE Trans. power electronics, vol. 22, no. 2, pp. 613–625, 2007.
  4. J. Sun, “Impedance-based stability criterion for grid-connected inverters,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3075–3078, 2011.
  5. X. Wang, L. Harnefors, and F. Blaabjerg, “Unified impedance model of grid-connected voltage-source converters,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1775–1787, 2017.
  6. B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli, and Z. Shen, “Analysis of dq small-signal impedance of grid-tied inverters,” IEEE Trans. Power Electronics, vol. 31, no. 1, pp. 675–687, 2015.
  7. A. Rygg, M. Molinas, C. Zhang, and X. Cai, “A modified sequence-domain impedance definition and its equivalence to the dq-domain impedance definition for the stability analysis of ac power electronic systems,” IEEE J. Emerging and Selected Topics in Power Electronics, vol. 4, no. 4, pp. 1383–1396, 2016.
  8. L. Huang, H. Xin, and F. Dörfler, “H∞\infty∞-control of grid-connected converters: Design, objectives and decentralized stability certificates,” IEEE Trans. Smart Grid, vol. 11, no. 5, pp. 3805–3816, 2020.
  9. L. Harnefors, X. Wang, A. G. Yepes, and F. Blaabjerg, “Passivity-based stability assessment of grid-connected vscs—an overview,” IEEE J. emerging and selected topics in Power Electronics, vol. 4, no. 1, pp. 116–125, 2015.
  10. M. Pérez, R. Ortega, and J. R. Espinoza, “Passivity-based pi control of switched power converters,” IEEE Trans. Control Systems Technology, vol. 12, no. 6, pp. 881–890, 2004.
  11. V. Häberle, L. Huang, X. He, E. Prieto-Arauj, R. S. Smith, and F. Dörfler, “MIMO grid impedance identification of three-phase power systems: Parametric vs. nonparametric approaches,” in 2023 IEEE 62nd Conference on Decision and Control (CDC), 2023.
  12. H. Liu, X. Xie, and W. Liu, “An oscillatory stability criterion based on the unified d⁢q𝑑𝑞dqitalic_d italic_q-frame impedance network model for power systems with high-penetration renewables,” IEEE Trans. Power Systems, vol. 33, no. 3, pp. 3472–3485, 2018.
  13. W. Dong, H. Xin, D. Wu, and L. Huang, “Small signal stability analysis of multi-infeed power electronic systems based on grid strength assessment,” IEEE trans. Power Systems, vol. 34, no. 2, 2018.
  14. A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, “Spontaneous synchrony in power-grid networks,” Nature Physics, vol. 9, no. 3, pp. 191–197, 2013.
  15. L. Huang, H. Xin, W. Dong, and F. Dörfler, “Impacts of grid structure on pll-synchronization stability of converter-integrated power systems,” IFAC-PapersOnLine, vol. 55, no. 13, pp. 264–269, 2022.
  16. J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodriguez, “Control of power converters in ac microgrids,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4734–4749, 2012.
  17. J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. De Vicuña, and M. Castilla, “Hierarchical control of droop-controlled ac and dc microgrids—a general approach toward standardization,” IEEE Trans. industrial electronics, vol. 58, no. 1, pp. 158–172, 2010.
  18. S. D’Arco and J. A. Suul, “Virtual synchronous machines—classification of implementations and analysis of equivalence to droop controllers for microgrids,” in 2013 IEEE Grenoble Conference.   IEEE, 2013, pp. 1–7.
  19. Q.-C. Zhong and G. Weiss, “Synchronverters: Inverters that mimic synchronous generators,” IEEE trans. industrial electronics, vol. 58, no. 4, pp. 1259–1267, 2010.
  20. B. B. Johnson, S. V. Dhople, A. O. Hamadeh, and P. T. Krein, “Synchronization of parallel single-phase inverters with virtual oscillator control,” IEEE Trans. Power Electron., vol. 29, no. 11, 2013.
  21. M. Colombino, D. Groß, J.-S. Brouillon, and F. Dörfler, “Global phase and magnitude synchronization of coupled oscillators with application to the control of grid-forming power inverters,” IEEE Trans. Automatic Control, vol. 64, no. 11, pp. 4496–4511, 2019.
  22. P. Vorobev, S. Chevalier, and K. Turitsyn, “Decentralized stability rules for microgrids,” in 2019 American Control Conference (ACC).   IEEE, 2019, pp. 2596–2601.
  23. P. Vorobev, S. Chevalier, K. Cavanagh, K. Turitsyn, F. Ibanez, and L. Daniel, “Network topology invariant stability certificates for dc microgrids with arbitrary load dynamics,” in 2022 IEEE Power & Energy Society General Meeting (PESGM).   IEEE, 2022, pp. 1–1.
  24. D. Wang, W. Chen, S. Z. Khong, and L. Qiu, “On the phases of a complex matrix,” Linear Algebra and its Applications, vol. 593, pp. 152–179, 2020.
  25. W. Chen, D. Wang, S. Z. Khong, and L. Qiu, “A phase theory of MIMO LTI systems,” arXiv preprint arXiv:2105.03630, 2021.
  26. ——, “Phase analysis of MIMO LTI systems,” in IEEE 58th Conference on Decision and Control, 2019, pp. 6062–6067.
  27. X. Mao, W. Chen, and L. Qiu, “Phases of discrete-time LTI multivariable systems,” Automatica, vol. 142, p. 110311, 2022.
  28. D. Zhao, W. Chen, and L. Qiu, “When small gain meets small phase,” arXiv preprint arXiv:2201.06041, 2022.
  29. L. Woolcock and R. Schmid, “Mixed gain/phase robustness criterion for structured perturbations with an application to power system stability,” IEEE Control Systems Letters, 2023.
  30. H. Xin, Y. Wang, E. Prieto-Araujo, and L. Huang, “How many grid-forming converters do we need? a perspective from power grid strength,” arXiv preprint arXiv:2209.10465, 2022.
  31. C. Yang, L. Huang, H. Xin, and P. Ju, “Placing grid-forming converters to enhance small signal stability of pll-integrated power systems,” IEEE Trans. Power Systems, vol. 36, no. 4, pp. 3563–3573, 2021.
  32. F. Dörfler and F. Bullo, “Kron reduction of graphs with applications to electrical networks,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 60, no. 1, pp. 150–163, 2012.
  33. L. Huang, H. Xin, Z. Li, P. Ju, H. Yuan, Z. Lan, and Z. Wang, “Grid-synchronization stability analysis and loop shaping for pll-based power converters with different reactive power control,” IEEE Trans. Smart Grid, vol. 11, no. 1, pp. 501–516, 2019.
  34. L. Huang, H. Xin, H. Yuan, G. Wang, and P. Ju, “Damping effect of virtual synchronous machines provided by a dynamical virtual impedance,” IEEE Transactions on Energy Conversion, vol. 36, no. 1, pp. 570–573, 2020.
  35. C. Canizares, T. Fernandes, E. Geraldi, L. Gerin-Lajoie, M. Gibbard, I. Hiskens, J. Kersulis, R. Kuiava, L. Lima, F. DeMarco et al., “Benchmark models for the analysis and control of small-signal oscillatory dynamics in power systems,” IEEE Transactions on Power Systems, vol. 32, no. 1, pp. 715–722, 2016.
  36. S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Three-phase plls: A review of recent advances,” IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 1894–1907, 2016.
  37. F. Zhang, H. Xin, D. Wu, Z. Wang, and D. Gan, “Assessing strength of multi-infeed LCC-HVDC systems using generalized short-circuit ratio,” IEEE Trans. Power Systems, vol. 34, no. 1, pp. 467–480, 2018.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com