Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VAPOR: Legged Robot Navigation in Outdoor Vegetation Using Offline Reinforcement Learning (2309.07832v2)

Published 14 Sep 2023 in cs.RO and cs.AI

Abstract: We present VAPOR, a novel method for autonomous legged robot navigation in unstructured, densely vegetated outdoor environments using offline Reinforcement Learning (RL). Our method trains a novel RL policy using an actor-critic network and arbitrary data collected in real outdoor vegetation. Our policy uses height and intensity-based cost maps derived from 3D LiDAR point clouds, a goal cost map, and processed proprioception data as state inputs, and learns the physical and geometric properties of the surrounding obstacles such as height, density, and solidity/stiffness. The fully-trained policy's critic network is then used to evaluate the quality of dynamically feasible velocities generated from a novel context-aware planner. Our planner adapts the robot's velocity space based on the presence of entrapment inducing vegetation, and narrow passages in dense environments. We demonstrate our method's capabilities on a Spot robot in complex real-world outdoor scenes, including dense vegetation. We observe that VAPOR's actions improve success rates by up to 40%, decrease the average current consumption by up to 2.9%, and decrease the normalized trajectory length by up to 11.2% compared to existing end-to-end offline RL and other outdoor navigation methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. N. S. Naik, V. V. Shete, and S. R. Danve, “Precision agriculture robot for seeding function,” in 2016 international conference on inventive computation technologies (ICICT), vol. 2.   IEEE, 2016, pp. 1–3.
  2. S. Karma, E. Zorba, G. Pallis, G. Statheropoulos, I. Balta, K. Mikedi, J. Vamvakari, A. Pappa, M. Chalaris, G. Xanthopoulos, et al., “Use of unmanned vehicles in search and rescue operations in forest fires: Advantages and limitations observed in a field trial,” International journal of disaster risk reduction, vol. 13, pp. 307–312, 2015.
  3. S. Li, C. Feng, Y. Niu, L. Shi, Z. Wu, and H. Song, “A fire reconnaissance robot based on slam position, thermal imaging technologies, and ar display,” Sensors, vol. 19, no. 22, p. 5036, 2019.
  4. A. J. Sathyamoorthy, K. Weerakoon, T. Guan, M. Russell, D. Conover, J. Pusey, and D. Manocha, “Vern: Vegetation-aware robot navigation in dense unstructured outdoor environments,” arXiv preprint arXiv:2303.14502, 2023.
  5. T. Guan, D. Kothandaraman, R. Chandra, A. J. Sathyamoorthy, K. Weerakoon, and D. Manocha, “Ga-nav: Efficient terrain segmentation for robot navigation in unstructured outdoor environments,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 8138–8145, 2022.
  6. L. Wellhausen, R. Ranftl, and M. Hutter, “Safe robot navigation via multi-modal anomaly detection,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1326–1333, 2020.
  7. A. J. Sathyamoorthy, K. Weerakoon, T. Guan, J. Liang, and D. Manocha, “Terrapn: Unstructured terrain navigation using online self-supervised learning,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 7197–7204.
  8. A. J. Sathyamoorthy, U. Patel, T. Guan, and D. Manocha, “Frozone: Freezing-free, pedestrian-friendly navigation in human crowds,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4352–4359, 2020.
  9. A. Hussein, E. Elyan, M. M. Gaber, and C. Jayne, “Deep imitation learning for 3d navigation tasks,” Neural computing and applications, vol. 29, pp. 389–404, 2018.
  10. A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning for offline reinforcement learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 1179–1191, 2020.
  11. I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learning with implicit q-learning,” arXiv preprint arXiv:2110.06169, 2021.
  12. F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from observation,” arXiv preprint arXiv:1805.01954, 2018.
  13. D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.
  14. K. Weerakoon, A. J. Sathyamoorthy, U. Patel, and D. Manocha, “Terp: Reliable planning in uneven outdoor environments using deep reinforcement learning,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 9447–9453.
  15. J. Liang, U. Patel, A. J. Sathyamoorthy, and D. Manocha, “Crowd-steer: Realtime smooth and collision-free robot navigation in densely crowded scenarios trained using high-fidelity simulation,” in Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, 2021, pp. 4221–4228.
  16. S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial, review, and perspectives on open problems,” arXiv preprint arXiv:2005.01643, 2020.
  17. D. Shah, A. Bhorkar, H. Leen, I. Kostrikov, N. Rhinehart, and S. Levine, “Offline reinforcement learning for visual navigation,” arXiv preprint arXiv:2212.08244, 2022.
  18. J. Iqbal, R. Xu, S. Sun, and C. Li, “Simulation of an autonomous mobile robot for lidar-based in-field phenotyping and navigation,” Robotics, vol. 9, no. 2, p. 46, 2020.
  19. G. Kahn, P. Abbeel, and S. Levine, “Badgr: An autonomous self-supervised learning-based navigation system,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1312–1319, 2021.
  20. A. Li, C. Yang, J. Frey, J. Lee, C. Cadena, and M. Hutter, “Seeing through the grass: Semantic pointcloud filter for support surface learning,” arXiv preprint arXiv:2305.07995, 2023.
  21. D. L. Stone, G. Shah, Y. Motai, and A. J. Aved, “Vegetation segmentation for sensor fusion of omnidirectional far-infrared and visual stream,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 2, pp. 614–626, 2019.
  22. D. Iberraken, F. Gaurier, J.-C. Roux, C. Chaballier, and R. Lenain, “Autonomous vineyard tracking using a four-wheel-steering mobile robot and a 2d lidar,” AgriEngineering, vol. 4, no. 4, pp. 826–846, 2022.
  23. M. Elnoor, A. J. Sathyamoorthy, K. Weerakoon, and D. Manocha, “Pronav: Proprioceptive traversability estimation for legged robot navigation in outdoor environments,” 2023.
  24. Z. Jian, Z. Liu, H. Shao, X. Wang, X. Chen, and B. Liang, “Path generation for wheeled robots autonomous navigation on vegetated terrain,” arXiv preprint arXiv:2306.08977, 2023.
  25. A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia, M. Fiser, and J. Davidson, “Prm-rl: Long-range robotic navigation tasks by combining reinforcement learning and sampling-based planning,” in 2018 IEEE international conference on robotics and automation (ICRA).   IEEE, 2018, pp. 5113–5120.
  26. D. Dugas, J. Nieto, R. Siegwart, and J. J. Chung, “Navrep: Unsupervised representations for reinforcement learning of robot navigation in dynamic human environments,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 7829–7835.
  27. U. Patel, N. K. S. Kumar, A. J. Sathyamoorthy, and D. Manocha, “Dwa-rl: Dynamically feasible deep reinforcement learning policy for robot navigation among mobile obstacles,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 6057–6063.
  28. T. Zhang and H. Mo, “Reinforcement learning for robot research: A comprehensive review and open issues,” International Journal of Advanced Robotic Systems, vol. 18, no. 3, p. 17298814211007305, 2021.
  29. F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy, “End-to-end driving via conditional imitation learning,” in 2018 IEEE international conference on robotics and automation (ICRA).   IEEE, 2018, pp. 4693–4700.
  30. D. Silver, J. A. Bagnell, and A. Stentz, “Applied imitation learning for autonomous navigation in complex natural terrain,” in Field and Service Robotics: Results of the 7th International Conference.   Springer, 2010, pp. 249–259.
  31. J. Li, C. Tang, M. Tomizuka, and W. Zhan, “Hierarchical planning through goal-conditioned offline reinforcement learning,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 216–10 223, 2022.
  32. K. Yang, S. Moon, S. Yoo, J. Kang, N. L. Doh, H. B. Kim, and S. Joo, “Spline-based rrt path planner for non-holonomic robots,” Journal of Intelligent & Robotic Systems, vol. 73, no. 1-4, pp. 763–782, 2014.
  33. A. Khan, I. Noreen, and Z. Habib, “On complete coverage path planning algorithms for non-holonomic mobile robots: Survey and challenges.” J. Inf. Sci. Eng., vol. 33, no. 1, pp. 101–121, 2017.
  34. H.-W. Chae, J.-H. Choi, and J.-B. Song, “Robust and autonomous stereo visual-inertial navigation for non-holonomic mobile robots,” IEEE Transactions on Vehicular Technology, vol. 69, no. 9, pp. 9613–9623, 2020.
  35. S. Eshtehardian and S. Khodaygan, “A continuous rrt*-based path planning method for non-holonomic mobile robots using b-spline curves,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 7, pp. 8693–8702, 2023.
  36. R. Holmberg and O. Khatib, “Development and control of a holonomic mobile robot for mobile manipulation tasks,” The International Journal of Robotics Research, vol. 19, no. 11, pp. 1066–1074, 2000.
  37. M. Alireza, D. Vincent, and W. Tony, “Experimental study of path planning problem using emcoa for a holonomic mobile robot,” Journal of Systems Engineering and Electronics, vol. 32, no. 6, pp. 1450–1462, 2021.
  38. R. F. Prudencio, M. R. Maximo, and E. L. Colombini, “A survey on offline reinforcement learning: Taxonomy, review, and open problems,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  39. T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor,” in International conference on machine learning.   PMLR, 2018, pp. 1861–1870.
  40. L. Di Giammarino, I. Aloise, C. Stachniss, and G. Grisetti, “Visual place recognition using lidar intensity information,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 4382–4389.
  41. T. D. Barfoot, C. McManus, S. Anderson, H. Dong, E. Beerepoot, C. H. Tong, P. Furgale, J. D. Gammell, and J. Enright, “Into darkness: Visual navigation based on a lidar-intensity-image pipeline,” in Robotics Research: The 16th International Symposium ISRR.   Springer, 2016, pp. 487–504.
  42. L. Weerakoon, G. S. Herr, J. Blunt, M. Yu, and N. Chopra, “Cartographer glass: 2d graph slam framework using lidar for glass environments,” 2022.
  43. K. Weerakoon, A. Jagan Sathyamoorthy, M. Elnoor, and D. Manocha, “VAPOR: Holonomic Legged Robot Navigation in Outdoor Vegetation Using Offline Reinforcement Learning,” arXiv e-prints, p. arXiv:2309.07832, Sept. 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Kasun Weerakoon (21 papers)
  2. Adarsh Jagan Sathyamoorthy (23 papers)
  3. Mohamed Elnoor (14 papers)
  4. Dinesh Manocha (366 papers)

Summary

We haven't generated a summary for this paper yet.