Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized equilibria for color-gradient lattice Boltzmann model based on higher-order Hermite polynomials: A simplified implementation with central moments (2309.07801v3)

Published 14 Sep 2023 in physics.comp-ph

Abstract: We propose generalized equilibria of a three-dimensional color-gradient lattice Boltzmann model for two-component two-phase flows using higher-order Hermite polynomials. Although the resulting equilibrium distribution function, which includes a sixth-order term on the velocity, is computationally cumbersome, its equilibrium central moments (CMs) are velocity-independent and have a simplified form. Numerical experiments show that our approach, as in Wen et al. [Phys. Rev. E 100, 023301 (2019)] who consider terms up to third order, improves the Galilean invariance compared to that of the conventional approach. Dynamic problems can be solved with high accuracy at a density ratio of 10; however, the accuracy is still limited to a density ratio of $1\,000$. For lower density ratios, the generalized equilibria benefit from the CM-based multiple-relaxation-time model, especially at very high Reynolds numbers, significantly improving the numerical stability.

Summary

We haven't generated a summary for this paper yet.