Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Multimodal Classification of Social Media Posts by Leveraging Image-Text Auxiliary Tasks (2309.07794v2)

Published 14 Sep 2023 in cs.CL, cs.LG, and cs.SI

Abstract: Effectively leveraging multimodal information from social media posts is essential to various downstream tasks such as sentiment analysis, sarcasm detection or hate speech classification. Jointly modeling text and images is challenging because cross-modal semantics might be hidden or the relation between image and text is weak. However, prior work on multimodal classification of social media posts has not yet addressed these challenges. In this work, we present an extensive study on the effectiveness of using two auxiliary losses jointly with the main task during fine-tuning multimodal models. First, Image-Text Contrastive (ITC) is designed to minimize the distance between image-text representations within a post, thereby effectively bridging the gap between posts where the image plays an important role in conveying the post's meaning. Second, Image-Text Matching (ITM) enhances the model's ability to understand the semantic relationship between images and text, thus improving its capacity to handle ambiguous or loosely related modalities. We combine these objectives with five multimodal models across five diverse social media datasets, demonstrating consistent improvements of up to 2.6 points F1. Our comprehensive analysis shows the specific scenarios where each auxiliary task is most effective.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com