Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symplectic and Lagrangian Polar Duality; Applications to Quantum Information Geometry (2309.07775v1)

Published 14 Sep 2023 in math-ph, cs.IT, math.AP, math.IT, math.MP, math.SG, and quant-ph

Abstract: Polar duality is a well-known concept from convex geometry and analysis. In the present paper, we study two symplectically covariant versions of polar duality keeping in mind their applications to quantum mechanics. The first variant makes use of the symplectic form on phase space and allows a precise study of the covariance matrix of a density operator. The latter is a fundamental object in quantum information theory., The second variant is a symplectically covariant version of the usual polar duality highlighting the role played by Lagrangian planes. It allows us to define the notion of "geometric quantum states" with are in bijection with generalized Gaussians.

Citations (1)

Summary

We haven't generated a summary for this paper yet.