Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Autonomous Agents in a Cyber Defence Environment (2309.07388v1)

Published 14 Sep 2023 in cs.CR

Abstract: Autonomous Cyber Defence is required to respond to high-tempo cyber-attacks. To facilitate the research in this challenging area, we explore the utility of the autonomous cyber operation environments presented as part of the Cyber Autonomy Gym for Experimentation (CAGE) Challenges, with a specific focus on CAGE Challenge 2. CAGE Challenge 2 required a defensive Blue agent to defend a network from an attacking Red agent. We provide a detailed description of the this challenge and describe the approaches taken by challenge participants. From the submitted agents, we identify four classes of algorithms, namely, Single- Agent Deep Reinforcement Learning (DRL), Hierarchical DRL, Ensembles, and Non-DRL approaches. Of these classes, we found that the hierarchical DRL approach was the most capable of learning an effective cyber defensive strategy. Our analysis of the agent policies identified that different algorithms within the same class produced diverse strategies and that the strategy used by the defensive Blue agent varied depending on the strategy used by the offensive Red agent. We conclude that DRL algorithms are a suitable candidate for autonomous cyber defence applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mitchell Kiely (1 paper)
  2. David Bowman (8 papers)
  3. Maxwell Standen (5 papers)
  4. Christopher Moir (1 paper)
Citations (5)