Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A divergence free $C^0$-RIPG stream function formulation of the incompressible Stokes system with variable viscosity (2309.07288v1)

Published 13 Sep 2023 in math.NA, cs.CE, cs.NA, and physics.geo-ph

Abstract: Pointwise divergence free velocity field approximations of the Stokes system are gaining popularity due to their necessity in precise modelling of physical flow phenomena. Several methods have been designed to satisfy this requirement; however, these typically come at a greater cost when compared with standard conforming methods, for example, because of the complex implementation and development of specialized finite element bases. Motivated by the desire to mitigate these issues for 2D simulations, we present a $C0$-interior penalty Galerkin (IPG) discretization of the Stokes system in the stream function formulation. In order to preserve a spatially varying viscosity this approach does not yield the standard and well known biharmonic problem. We further employ the so-called robust interior penalty Galerkin (RIPG) method; stability and convergence analysis of the proposed scheme is undertaken. The former, which involves deriving a bound on the interior penalty parameter is particularly useful to address the $\mathcal{O}(h{-4})$ growth in the condition number of the discretized operator. Numerical experiments confirming the optimal convergence of the proposed method are undertaken. Comparisons with thermally driven buoyancy mantle convection model benchmarks are presented.

Summary

We haven't generated a summary for this paper yet.