On the integrability of Lie algebroids by diffeological spaces (2309.07258v3)
Abstract: Lie's third theorem does not hold for Lie groupoids and Lie algebroids. In this article, we show that Lie's third theorem is valid within a specific class of diffeological groupoids that we call singular Lie groupoids.' To achieve this, we introduce a subcategory of diffeological spaces which we call
quasi-etale.' Singular Lie groupoids are precisely the groupoid objects within this category, where the unit space is a manifold. Our approach involves the construction of a functor that maps singular Lie groupoids to Lie algebroids, extending the classical functor from Lie groupoids to Lie algebroids. We prove that the \v{S}evera-Weinstein groupoid of an algebroid is an example of a singular Lie groupoid, thereby establishing Lie's third theorem in this context.
- Alireza Ahmadi. Submersions, immersions, and étale maps in diffeology. arXiv (preprint), 2023. https://arxiv.org/pdf/2203.05994.pdf.
- R Almeida and P Molino. Suites d’Atiyah, feuilletages et quantification. Université de Montpellier, Sémin. Géom. Univ. Sci. Tech. Languedoc:39–59, 1985.
- Integration of Singular Subalgebroids. arXiv (preprint), August 2020. arXiv: 2008.07976.
- Christian Blohmann. Elastic diffeological spaces. arXiv (preprint), 2023. https://arxiv.org/pdf/2301.02583.pdf.
- Principal actions of stacky Lie groupoids. International Mathematics Research Notices. IMRN, 2020(16):5055–5125, 2020.
- Poisson sigma models and symplectic groupoids. In Quantization of Singular Symplectic Quotients, pages 61–93. Birkhäuser Basel, 2001.
- Integrability of Lie brackets. Annals of Mathematics. Second Series, 157(2):575–620, 2003.
- Lectures on integrability of Lie brackets. In Lectures on Poisson geometry, volume 17 of Geom. Topol. Monogr., pages 1–107. Geom. Topol. Publ., Coventry, 2011.
- Kuo Tsai Chen. Iterated path integrals. Bulletin of the American Mathematical Society, 83(5):831–879, 1977.
- On local integration of Lie brackets. Journal für die Reine und Angewandte Mathematik. [Crelle’s Journal], 760:267–293, 2020.
- Deformations of Lie groupoids. International Mathematics Research Notices. IMRN, 2020(21):7662–7746, 2020.
- Tangent spaces and tangent bundles for diffeological spaces. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 57(1):3–50, 2016.
- Associativity and integrability. Transactions of the American Mathematical Society, 373(7):5057–5110, 2020.
- G. Hector. Géométrie et topologie des espaces difféologiques. In Analysis and geometry in foliated manifolds (Santiago de Compostela, 1994), pages 55–80. World Sci. Publ., River Edge, NJ, 1995.
- Diffeological groups. In Research and Exposition in Mathematics, volume 25, pages 247–260, 2002.
- Patrick Iglesias-Zemmour. Fibrations difféologiques et homotopie. PhD thesis, Université de Provence, Marseille, 1985.
- Patrick Iglesias-Zemmour. Diffeology, volume 185 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2013.
- Quasifold groupoids and diffeological quasifolds. arXiv (preprint), June 2022. https://arxiv.org/pdf/2206.14776.pdf.
- Serge Lang. Fundamentals of differential geometry, volume 191 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1999.
- A. Malcev. Sur les groupes topologiques locaux et complets. C. R. (Doklady) Acad. Sci. URSS (N.S.), 32:606–608, 1941.
- Elisa Prato. Sur une généralisation de la notion de V-variété. Comptes Rendus de l’Académie des Sciences. Série I. Mathématique, 328(10):887–890, 1999.
- J.-M. Souriau. Groupes différentiels de physique mathématique. In South Rhone seminar on geometry, II (Lyon, 1983), Travaux en Cours, pages 73–119. Hermann, Paris, 1984.
- Jean-Marie Souriau. Groupes différentiels. In Differential Geometrical Methods in Mathematical Physics, pages 91–128. Springer, 2006.
- Integrating Poisson manifolds via stacks. In Travaux mathématiques. Fasc. XVI, volume 16 of Trav. Math., pages 285–297. Univ. Luxemb., Luxembourg, 2005.
- Integrating Lie algebroids via stacks. Compositio Mathematica, 142(1):251–270, 2006.
- Chenchang Zhu. Lie II theorem for Lie algebroids via stacky Lie groupoids. In Trends in mathematics, pages 115–139. Universitätsdrucke Göttingen, Göttingen, 2008.
- Pavel Ševera. Some title containing the words ‘homotopy’ and ‘symplectic’, e.g. this one. Travaux Mathématiques, Univ. Luxemb., XVI:121–137, 2005. based on talk at Poisson 2000, Luminy.