Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Time-Reversal Invariant Topological Moiré Flatband: A Platform for the Fractional Quantum Spin Hall Effect (2309.07222v2)

Published 13 Sep 2023 in cond-mat.mes-hall, cond-mat.mtrl-sci, and cond-mat.str-el

Abstract: Motivated by recent observation of the quantum spin Hall effect in monolayer germanene and twisted bilayer transition-metal-dichalcogenides (TMDs), we study the topological phases of moir\'e twisted bilayers with time-reversal symmetry and spin $s_z$ conservation. By using a continuum model description which can be applied to both germanene and TMD bilayers, we show that at small twist angles, the emergent moir\'e flatbands can be topologically nontrivial due to inversion symmetry breaking. Each of these flatbands for each spin projection admits a lowest-Landau-level description in the chiral limit and at magic twist angle. This allows for the construction of a many-body Laughlin state with time-reversal symmetry which can be stabilized by a short-range pseudopotential, and therefore serves as an ideal platform for realizing the so-far elusive fractional quantum spin Hall effect with emergent spin-1/2 U(1) symmetry.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. N. Regnault and B. A. Bernevig, Fractional chern insulator, Physical Review X 1, 021014 (2011).
  2. R. Bistritzer and A. H. MacDonald, Moiré bands in twisted double-layer graphene, Proceedings of the National Academy of Sciences 108, 12233 (2011).
  3. J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Graphene bilayer with a twist: Electronic structure, Phys. Rev. Lett. 99, 256802 (2007).
  4. G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Origin of magic angles in twisted bilayer graphene, Phys. Rev. Lett. 122, 106405 (2019a).
  5. G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Origin of magic angles in twisted bilayer graphene, Phys. Rev. Lett. 122, 106405 (2019b).
  6. F. Wu and S. Das Sarma, Collective excitations of quantum anomalous hall ferromagnets in twisted bilayer graphene, Phys. Rev. Lett. 124, 046403 (2020).
  7. N. Bultinck, S. Chatterjee, and M. P. Zaletel, Mechanism for anomalous hall ferromagnetism in twisted bilayer graphene, Phys. Rev. Lett. 124, 166601 (2020b).
  8. J. Liu and X. Dai, Theories for the correlated insulating states and quantum anomalous hall effect phenomena in twisted bilayer graphene, Phys. Rev. B 103, 035427 (2021).
  9. Y.-H. Zhang, D. Mao, and T. Senthil, Twisted bilayer graphene aligned with hexagonal boron nitride: Anomalous hall effect and a lattice model, Phys. Rev. Res. 1, 033126 (2019).
  10. J. Liu, J. Liu, and X. Dai, Pseudo landau level representation of twisted bilayer graphene: Band topology and implications on the correlated insulating phase, Phys. Rev. B 99, 155415 (2019).
  11. Y.-M. Wu, Z. Wu, and H. Yao, Pair-density-wave and chiral superconductivity in twisted bilayer transition metal dichalcogenides, Phys. Rev. Lett. 130, 126001 (2023a).
  12. D. Mao, K. Zhang, and E.-A. Kim, Fractionalization in fractional correlated insulating states at n±1/3plus-or-minus𝑛13n\pm{}1/3italic_n ± 1 / 3 filled twisted bilayer graphene, Phys. Rev. Lett. 131, 106801 (2023).
  13. C. L. Kane and E. J. Mele, Quantum spin hall effect in graphene, Phys. Rev. Lett. 95, 226801 (2005a).
  14. C. L. Kane and E. J. Mele, Z2subscript𝑍2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT topological order and the quantum spin hall effect, Phys. Rev. Lett. 95, 146802 (2005b).
  15. B. A. Bernevig and S.-C. Zhang, Quantum spin hall effect, Phys. Rev. Lett. 96, 106802 (2006).
  16. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum spin hall effect and topological phase transition in hgte quantum wells, Science 314, 1757 (2006).
  17. M. O. Goerbig, From fractional chern insulators to a fractional quantum spin hall effect, The European Physical Journal B 85, 15 (2012).
  18. M. Levin and A. Stern, Fractional topological insulators, Physical review letters 103, 196803 (2009).
  19. Here we approximately assume that δ𝛿\deltaitalic_δ is the same for both layers.
  20. N. J. Roome and J. D. Carey, Beyond graphene: Stable elemental monolayers of silicene and germanene, ACS Applied Materials & Interfaces 6, 7743 (2014).
  21. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
  22. Y.-M. Wu, R. Thomale, and S. Raghu, Sublattice interference promotes pair density wave order in kagome metals, Phys. Rev. B 108, L081117 (2023b).
  23. M. L. Kiesel and R. Thomale, Sublattice interference in the kagome hubbard model, Phys. Rev. B 86, 121105 (2012).
  24. S. Kharchev and A. Zabrodin, Theta vocabulary i, Journal of Geometry and Physics 94, 19 (2015).
  25. F. D. M. Haldane, A modular-invariant modified Weierstrass sigma-function as a building block for lowest-Landau-level wavefunctions on the torus, Journal of Mathematical Physics 59, 071901 (2018).
  26. F. D. M. Haldane and E. H. Rezayi, Periodic laughlin-jastrow wave functions for the fractional quantized hall effect, Phys. Rev. B 31, 2529 (1985).
  27. P. J. Ledwith, A. Vishwanath, and D. E. Parker, Vortexability: A unifying criterion for ideal fractional chern insulators (2022), arXiv:2209.15023 [cond-mat.str-el] .
  28. S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Magneto-roton theory of collective excitations in the fractional quantum hall effect, Phys. Rev. B 33, 2481 (1986).
  29. S. A. Parameswaran, R. Roy, and S. L. Sondhi, Fractional chern insulators and the W∞subscript𝑊{W}_{\infty}italic_W start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT algebra, Phys. Rev. B 85, 241308 (2012).
  30. R. Roy, Band geometry of fractional topological insulators, Phys. Rev. B 90, 165139 (2014).
  31. J. Zak, Magnetic translation group, Phys. Rev. 134, A1602 (1964).
  32. D. L. Maslov and M. Stone, Landauer conductance of luttinger liquids with leads, Phys. Rev. B 52, R5539 (1995).
Citations (6)

Summary

We haven't generated a summary for this paper yet.