Reversibility of quantum resources through probabilistic protocols (2309.07206v3)
Abstract: Among the most fundamental questions in the manipulation of quantum resources such as entanglement is the possibility of reversibly transforming all resource states. The key consequence of this would be the identification of a unique entropic resource measure that exactly quantifies the limits of achievable transformation rates. Remarkably, previous results claimed that such asymptotic reversibility holds true in very general settings; however, recently those findings have been found to be incomplete, casting doubt on the conjecture. Here we show that it is indeed possible to reversibly interconvert all states in general quantum resource theories, as long as one allows protocols that may only succeed probabilistically. Although such transformations have some chance of failure, we show that their success probability can be ensured to be bounded away from zero, even in the asymptotic limit of infinitely many manipulated copies. As in previously conjectured approaches, the achievability here is realised through operations that are asymptotically resource non-generating, and we show that this choice is optimal: smaller sets of transformations cannot lead to reversibility. Our methods are based on connecting the transformation rates under probabilistic protocols with strong converse rates for deterministic transformations, which we strengthen into an exact equivalence in the case of entanglement distillation.
- M. Horodecki, Entanglement Measures, Quant. Inf. Comput. 1, 3 (2001).
- E. Chitambar and G. Gour, Quantum resource theories, Rev. Mod. Phys. 91, 025001 (2019).
- R. Giles, Mathematical Foundations of Thermodynamics (Pergamon, 1964).
- E. H. Lieb and J. Yngvason, The physics and mathematics of the second law of thermodynamics, Phys. Rep. 310, 1 (1999).
- S. Popescu and D. Rohrlich, Thermodynamics and the measure of entanglement, Phys. Rev. A 56, R3319 (1997).
- F. G. S. L. Brandão and M. B. Plenio, Entanglement theory and the second law of thermodynamics, Nat. Phys. 4, 873 (2008).
- F. G. S. L. Brandão and M. B. Plenio, A Reversible Theory of Entanglement and its Relation to the Second Law, Commun. Math. Phys. 295, 829 (2010a).
- M. Horodecki, P. Horodecki, and R. Horodecki, Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? Phys. Rev. Lett. 80, 5239 (1998).
- G. Vidal and J. I. Cirac, Irreversibility in Asymptotic Manipulations of Entanglement, Phys. Rev. Lett. 86, 5803 (2001).
- X. Wang and R. Duan, Irreversibility of Asymptotic Entanglement Manipulation Under Quantum Operations Completely Preserving Positivity of Partial Transpose, Phys. Rev. Lett. 119, 180506 (2017).
- L. Lami and B. Regula, No second law of entanglement manipulation after all, Nat. Phys. 19, 184 (2023a).
- F. G. S. L. Brandão and G. Gour, Reversible framework for quantum resource theories, Phys. Rev. Lett. 115, 070503 (2015).
- F. G. S. L. Brandão and M. B. Plenio, A Generalization of Quantum Stein’s Lemma, Commun. Math. Phys. 295, 791 (2010b).
- G. Vidal, Entanglement of Pure States for a Single Copy, Phys. Rev. Lett. 83, 1046 (1999).
- H.-K. Lo and S. Popescu, Concentrating entanglement by local actions: Beyond mean values, Phys. Rev. A 63, 022301 (2001).
- B. Regula, Probabilistic Transformations of Quantum Resources, Phys. Rev. Lett. 128, 110505 (2022).
- G. Vidal and R. Tarrach, Robustness of entanglement, Phys. Rev. A 59, 141 (1999).
- N. Datta, Max-relative entropy of entanglement, alias log robustness, Int. J. Quantum Inform. 07, 475 (2009).
- M. Horodecki and J. Oppenheim, (Quantumness in the context of) Resource theories, Int. J. Mod. Phys. B 27, 1345019 (2013).
- A. Winter, Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints, Commun. Math. Phys. 347, 291 (2016).
- I. Devetak and A. Winter, Distillation of secret key and entanglement from quantum states, Proc. R. Soc. A 461, 207 (2005).
- L. Lami and B. Regula, Distillable entanglement under dually non-entangling operations, arXiv:2307.11008 (2023b).
- M. Hayashi, Quantum Information: An Introduction (Springer Science & Business Media, 2006).
- T. Ogawa and H. Nagaoka, Strong converse and Stein’s lemma in quantum hypothesis testing, IEEE Trans. Inf. Theory 46, 2428 (2000).
- T. Ogawa and H. Nagaoka, Strong converse to the quantum channel coding theorem, IEEE Trans. Inf. Theory 45, 2486 (1999).
- R. König and S. Wehner, A Strong Converse for Classical Channel Coding Using Entangled Inputs, Phys. Rev. Lett. 103, 070504 (2009).
- C. Morgan and A. Winter, “Pretty Strong” Converse for the Quantum Capacity of Degradable Channels, IEEE Trans. Inf. Theory 60, 317 (2014).
- M. Piani, Relative Entropy of Entanglement and Restricted Measurements, Phys. Rev. Lett. 103, 160504 (2009).
- J. R. Seddon, Advancing Classical Simulators by Measuring the Magic of Quantum Computation, Ph.D. thesis, University College London (2022).
- C. Fuchs and J. van de Graaf, Cryptographic distinguishability measures for quantum-mechanical states, IEEE Trans. Inf. Theory 45, 1216 (1999).
- B. Regula, Convex geometry of quantum resource quantification, J. Phys. A: Math. Theor. 51, 045303 (2018).
- M. Tomamichel, Quantum Information Processing with Finite Resources (Springer, 2016).
- M. Horodecki and P. Horodecki, Reduction criterion of separability and limits for a class of distillation protocols, Phys. Rev. A 59, 4206 (1999).
- A. W. Harrow and M. A. Nielsen, Robustness of quantum gates in the presence of noise, Phys. Rev. A 68, 012308 (2003).
- E. M. Rains, A semidefinite program for distillable entanglement, IEEE Trans. Inf. Theory 47, 2921 (2001).
- G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).