Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Robot Informative Path Planning from Regression with Sparse Gaussian Processes (with Appendix) (2309.07050v3)

Published 13 Sep 2023 in cs.RO

Abstract: This paper addresses multi-robot informative path planning (IPP) for environmental monitoring. The problem involves determining informative regions in the environment that should be visited by robots to gather the most information about the environment. We propose an efficient sparse Gaussian process-based approach that uses gradient descent to optimize paths in continuous environments. Our approach efficiently scales to both spatially and spatio-temporally correlated environments. Moreover, our approach can simultaneously optimize the informative paths while accounting for routing constraints, such as a distance budget and limits on the robot's velocity and acceleration. Our approach can be used for IPP with both discrete and continuous sensing robots, with point and non-point field-of-view sensing shapes, and for both single and multi-robot IPP. We demonstrate that the proposed approach is fast and accurate on real-world data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. J. Binney, A. Krause, and G. S. Sukhatme, “Optimizing waypoints for monitoring spatiotemporal phenomena,” The International Journal of Robotics Research, vol. 32, no. 8, pp. 873–888, 2013.
  2. K.-C. Ma, L. Liu, H. K. Heidarsson, and G. S. Sukhatme, “Data-driven learning and planning for environmental sampling,” Journal of Field Robotics, vol. 35, no. 5, pp. 643–661, 2018.
  3. V. Suryan and P. Tokekar, “Learning a Spatial Field in Minimum Time With a Team of Robots,” IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1562–1576, 2020.
  4. K. Jakkala and S. Akella, “Probabilistic Gas Leak Rate Estimation Using Submodular Function Maximization With Routing Constraints,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5230–5237, 2022.
  5. R. N. Smith, M. Schwager, S. L. Smith, B. H. Jones, D. Rus, and G. S. Sukhatme, “Persistent Ocean Monitoring with Underwater Gliders: Adapting Sampling Resolution,” Journal of Field Robotics, vol. 28, no. 5, pp. 714–741, 2011.
  6. H. Zhu, J. J. Chung, N. R. Lawrance, R. Siegwart, and J. Alonso-Mora, “Online Informative Path Planning for Active Information Gathering of a 3D Surface,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 1488–1494.
  7. J. Rückin, L. Jin, F. Magistri, C. Stachniss, and M. Popović, “Informative Path Planning for Active Learning in Aerial Semantic Mapping,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 11 932–11 939.
  8. G. A. Hollinger and G. S. Sukhatme, “Sampling-based robotic information gathering algorithms,” The International Journal of Robotics Research, vol. 33, no. 9, pp. 1271–1287, 2014.
  9. G. Hitz, E. Galceran, M.-E. Garneau, F. Pomerleau, and R. Siegwart, “Adaptive Continuous-Space Informative Path Planning for Online Environmental Monitoring,” Journal of Field Robotics, vol. 34, no. 8, pp. 1427–1449, 2017.
  10. G. Francis, L. Ott, R. Marchant, and F. Ramos, “Occupancy map building through Bayesian exploration,” The International Journal of Robotics Research, vol. 38, no. 7, pp. 769–792, 2019.
  11. K. C. T. Vivaldini, T. H. Martinelli, V. C. Guizilini, J. R. Souza, M. D. Oliveira, F. T. Ramos, and D. F. Wolf, “UAV route planning for active disease classification,” Autonomous Robots, vol. 43, no. 5, pp. 1137–1153, Jun 2019.
  12. M. Popović, T. Vidal-Calleja, G. Hitz, J. J. Chung, I. Sa, R. Siegwart, and J. Nieto, “An informative path planning framework for UAV-based terrain monitoring,” Autonomous Robots, vol. 44, no. 6, pp. 889–911, Jul 2020.
  13. A. Krause, A. Singh, and C. Guestrin, “Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies,” Journal of Machine Learning Research, vol. 9, no. 8, pp. 235–284, 2008.
  14. A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser, “Efficient informative sensing using multiple robots,” J. Artif. Int. Res., vol. 34, no. 1, p. 707–755, Apr. 2009.
  15. G. Hollinger and S. Singh, “Proofs and experiments in scalable, near-optimal search by multiple robots,” in Robotics: Science and Systems IV, 2009, pp. 206–213.
  16. C. Chekuri and M. Pal, “A recursive greedy algorithm for walks in directed graphs,” in 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), 2005, pp. 245–253.
  17. A. Krause and C. Guestrin, “Submodularity and its applications in optimized information gathering,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 4, Jul. 2011.
  18. L. Bottarelli, M. Bicego, J. Blum, and A. Farinelli, “Orienteering-based informative path planning for environmental monitoring,” Engineering Applications of Artificial Intelligence, vol. 77, pp. 46 – 58, 2019.
  19. L. M. Miller, Y. Silverman, M. A. MacIver, and T. D. Murphey, “Ergodic Exploration of Distributed Information,” IEEE Transactions on Robotics, vol. 32, no. 1, pp. 36–52, 2016.
  20. R. Mishra, M. Chitre, and S. Swarup, “Online Informative Path Planning Using Sparse Gaussian Processes,” in 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), 2018, pp. 1–5.
  21. J. Yu, M. Schwager, and D. Rus, “Correlated orienteering problem and its application to informative path planning for persistent monitoring tasks,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 342–349.
  22. S. Agarwal and S. Akella, “The Correlated Arc Orienteering Problem,” in Algorithmic Foundations of Robotics XV, S. M. LaValle, J. M. O’Kane, M. Otte, D. Sadigh, and P. Tokekar, Eds.   Cambridge, Massachusetts, USA: Springer International Publishing, 2023, pp. 402–418.
  23. J. Rückin, L. Jin, and M. Popović, “Adaptive Informative Path Planning Using Deep Reinforcement Learning for UAV-based Active Sensing,” in 2022 International Conference on Robotics and Automation (ICRA), 2022, pp. 4473–4479.
  24. E. Snelson and Z. Ghahramani, “Sparse Gaussian Processes using Pseudo-inputs,” in Advances in Neural Information Processing Systems, Y. Weiss, B. Schölkopf, and J. Platt, Eds., vol. 18.   MIT Press, Cambridge, 2006.
  25. M. Titsias, “Variational Learning of Inducing Variables in Sparse Gaussian Processes,” in Proceedings of Machine Learning Research, 2009, pp. 567–574.
  26. T. N. Hoang, Q. M. Hoang, and B. K. H. Low, “A Unifying Framework of Anytime Sparse Gaussian Process Regression Models with Stochastic Variational Inference for Big Data,” in Proceedings of the 32nd International Conference on Machine Learning, F. Bach and D. Blei, Eds., vol. 37.   Lille, France: PMLR, 2015, pp. 569–578.
  27. T. D. Bui, J. Yan, and R. E. Turner, “A Unifying Framework for Gaussian Process Pseudo-Point Approximations Using Power Expectation Propagation,” The Journal of Machine Learning Research, vol. 18, no. 1, p. 3649–3720, Jan 2017.
  28. M. Bauer, M. van der Wilk, and C. E. Rasmussen, “Understanding Probabilistic Sparse Gaussian Process Approximations,” in Proceedings of the 30th International Conference on Neural Information Processing Systems, ser. NIPS’16, 2016, p. 1533–1541.
  29. K. Jakkala and S. Akella, “Efficient Sensor Placement from Regression with Sparse Gaussian Processes in Continuous and Discrete Spaces,” 2023, https://arxiv.org/abs/2303.00028.
  30. L. Perron and V. Furnon, “OR-Tools,” Google, https://developers.google.com/optimization/.
  31. K. Jakkala and S. Akella, “Multi-robot informative path planning from regression with sparse Gaussian processes (with Appendix),” 2024, https://arxiv.org/pdf/2309.07050.pdf.
  32. R. Murray-Smith and B. A. Pearlmutter, “Transformations of Gaussian Process Priors,” in Deterministic and Statistical Methods in Machine Learning, J. Winkler, M. Niranjan, and N. Lawrence, Eds.   Berlin, Heidelberg: Springer, 2005, pp. 110–123.
  33. K. Longi, C. Rajani, T. Sillanpää, J. Mäkinen, T. Rauhala, A. Salmi, E. Haeggström, and A. Klami, “Sensor Placement for Spatial Gaussian Processes with Integral Observations,” in Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI), ser. Proceedings of Machine Learning Research, J. Peters and D. Sontag, Eds., vol. 124.   PMLR, 03–06 Aug 2020, pp. 1009–1018.
  34. A. F. Shchepetkin and J. C. McWilliams, “The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model,” Ocean Modelling, vol. 9, no. 4, pp. 347–404, 2005.
  35. “NASA SPoRT-LiS Soil Moisture Products,” drought.gov, https://www.drought.gov/data-maps-tools/nasa-sport-lis-soil-moisture-products.
Citations (5)

Summary

We haven't generated a summary for this paper yet.