Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Expressibility of Parameterized Quantum Circuits using Graph Neural Network (2309.06975v1)

Published 13 Sep 2023 in quant-ph

Abstract: Parameterized Quantum Circuits (PQCs) are essential to quantum machine learning and optimization algorithms. The expressibility of PQCs, which measures their ability to represent a wide range of quantum states, is a critical factor influencing their efficacy in solving quantum problems. However, the existing technique for computing expressibility relies on statistically estimating it through classical simulations, which requires many samples. In this work, we propose a novel method based on Graph Neural Networks (GNNs) for predicting the expressibility of PQCs. By leveraging the graph-based representation of PQCs, our GNN-based model captures intricate relationships between circuit parameters and their resulting expressibility. We train the GNN model on a comprehensive dataset of PQCs annotated with their expressibility values. Experimental evaluation on a four thousand random PQC dataset and IBM Qiskit's hardware efficient ansatz sets demonstrates the superior performance of our approach, achieving a root mean square error (RMSE) of 0.03 and 0.06, respectively.

Summary

We haven't generated a summary for this paper yet.