Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CCSPNet-Joint: Efficient Joint Training Method for Traffic Sign Detection Under Extreme Conditions (2309.06902v4)

Published 13 Sep 2023 in cs.CV

Abstract: Traffic sign detection is an important research direction in intelligent driving. Unfortunately, existing methods often overlook extreme conditions such as fog, rain, and motion blur. Moreover, the end-to-end training strategy for image denoising and object detection models fails to utilize inter-model information effectively. To address these issues, we propose CCSPNet, an efficient feature extraction module based on Contextual Transformer and CNN, capable of effectively utilizing the static and dynamic features of images, achieving faster inference speed and providing stronger feature enhancement capabilities. Furthermore, we establish the correlation between object detection and image denoising tasks and propose a joint training model, CCSPNet-Joint, to improve data efficiency and generalization. Finally, to validate our approach, we create the CCTSDB-AUG dataset for traffic sign detection in extreme scenarios. Extensive experiments have shown that CCSPNet achieves state-of-the-art performance in traffic sign detection under extreme conditions. Compared to end-to-end methods, CCSPNet-Joint achieves a 5.32% improvement in precision and an 18.09% improvement in [email protected].

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Haoqin Hong (1 paper)
  2. Yue Zhou (130 papers)
  3. Xiangyu Shu (1 paper)
  4. Xiaofang Hu (4 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.