Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Circuit QED with a Giant Atom Coupling to Left-handed Superlattice Metamaterials (2309.06826v2)

Published 13 Sep 2023 in quant-ph and cond-mat.mes-hall

Abstract: Giant atoms, where the dipole approximation ceases to be valid, allow us to observe unconventional quantum optical phenomena arising from interference and time-delay effects. Most previous studies consider giant atoms coupling to conventional materials with right-handed dispersion. In this study, we first investigate the quantum dynamics of a giant atom interacting with left-handed superlattice metamaterials. Different from those right-handed counterparts, the left-handed superlattices exhibit an asymmetric band gap generated by anomalous dispersive bands and Bragg scattering bands. First, by assuming that the giant atom is in resonance with the continuous dispersive energy band, spontaneous emission will undergo periodic enhancement or suppression due to the interference effect. At the resonant position, there is a significant discrepancy in the spontaneous decay rates between the upper and lower bands, which arises from the differences in group velocity. Second, we explore the non-Markovian dynamics of the giant atom by considering the frequency of the emitter outside the energy band, where bound states will be induced by the interference between two coupling points. By employing both analytical and numerical methods, we demonstrate that the steady atomic population will be periodically modulated, driven by variations in the size of the giant atom. The presence of asymmetric band edges leads to diverse interference dynamics. Finally, we consider the case of two identical emitters coupling to the waveguide and find that the energy within the two emitters undergoes exchange through the mechanism Rabi oscillations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Q.-Y. Cai and W.-Z. Jia, Coherent single-photon scattering spectra for a giant-atom waveguide-QED system beyond the dipole approximation, Phys. Rev. A 104, 033710 (2021).
  2. X.-L. Yin, W.-B. Luo, and J.-Q. Liao, Non-Markovian disentanglement dynamics in double-giant-atom waveguide-QED systems, Phys. Rev. A 106, 063703 (2022).
  3. A. Frisk Kockum, P. Delsing, and G. Johansson, Designing frequency-dependent relaxation rates and lamb shifts for a giant artificial atom, Phys. Rev. A 90, 013837 (2014).
  4. L. Du and Y. Li, Single-photon frequency conversion via a giant ΛΛ\mathrm{\Lambda}roman_Λ-type atom, Phys. Rev. A 104, 023712 (2021).
  5. L. Du, Y. Zhang, and Y. Li, A giant atom with modulated transition frequency, Front. Phys. 18, 12301 (2022b).
  6. A. F. Kockum, G. Johansson, and F. Nori, Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics, Phys. Rev. Lett. 120, 140404 (2018).
  7. L. Du, L.-Z. Guo, and Y. Li, Complex decoherence-free interactions between giant atoms, Phys. Rev. A 107, 023705 (2023a).
  8. A. Carollo, D. Cilluffo, and F. Ciccarello, Mechanism of decoherence-free coupling between giant atoms, Phys. Rev. Res. 2, 043184 (2020).
  9. A. Soro, C. S. Muñoz, and A. F. Kockum, Interaction between giant atoms in a one-dimensional structured environment, Phys. Rev. A 107, 013710 (2023).
  10. K. H. Lim, W.-K. Mok, and L.-C. Kwek, Oscillating bound states in non-markovian photonic lattices, Phys. Rev. A 107, 023716 (2023).
  11. W. Zhao and Z. Wang, Single-photon scattering and bound states in an atom-waveguide system with two or multiple coupling points, Phys. Rev. A 101, 053855 (2020).
  12. W.-Z. Jia and M.-T. Yu, Atom-photon dressed states in a waveguide-QED system with multiple giant atoms coupled to a resonator-array waveguide (2023), arXiv:2304.02072 [quant-ph] .
  13. X. Wang and H.-R. Li, Chiral quantum network with giant atoms, Quantum Sci. Technol. 7, 035007 (2022).
  14. A. Soro and A. F. Kockum, Chiral quantum optics with giant atoms, Phys. Rev. A 105, 023712 (2022).
  15. C. Joshi, F. Yang, and M. Mirhosseini, Resonance Fluorescence of a Chiral Artificial Atom, Phys. Rev. X 13, 021039 (2023).
  16. H. Yu, Z. Wang, and J.-H. Wu, Entanglement preparation and nonreciprocal excitation evolution in giant atoms by controllable dissipation and coupling, Phys. Rev. A 104, 013720 (2021).
  17. J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453, 1031 (2008a).
  18. G. Wendin and V. S. Shumeiko, Superconducting Quantum Circuits, Qubits and Computing (2005), arXiv:cond-mat/0508729 .
  19. J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453, 1031 (2008b).
  20. A. Blais, S. M. Girvin, and W. D. Oliver, Quantum information processing and quantum optics with circuit quantum electrodynamics, Nat. Phys. 16, 247 (2020).
  21. M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, Colloquium: Nonlinear metamaterials, Rev. Mod. Phys. 86, 1093 (2014).
  22. C. Sugino, M. Alshaqaq, and A. Erturk, Spatially programmable wave compression and signal enhancement in a piezoelectric metamaterial waveguide, Phys. Rev. B 106, 174304 (2022).
  23. K. Fan, R. D. Averitt, and W. J. Padilla, Active and tunable nanophotonic metamaterials, Nanophotonics 11, 3769 (2022).
  24. T. Kukolj and M. Čubrović, Spontaneous isotropy breaking for vortices in nonlinear left-handed metamaterials, Phys. Rev. A 100, 053853 (2019).
  25. D. J. Egger and F. K. Wilhelm, Multimode Circuit Quantum Electrodynamics with Hybrid Metamaterial Transmission Lines, Phys. Rev. Lett. 111, 163601 (2013).
  26. J. S. Douglas, T. Caneva, and D. E. Chang, Photon Molecules in Atomic Gases Trapped Near Photonic Crystal Waveguides, Phys. Rev. X 6, 031017 (2016).
  27. D. Obana, F. Liu, and K. Wakabayashi, Topological edge states in the Su-Schrieffer-Heeger model, Phys. Rev. B 100, 075437 (2019).
  28. P. Jung, A. V. Ustinov, and S. M. Anlage, Progress in superconducting metamaterials, Supercond. Sci. Technol. 27, 073001 (2014).
  29. A. Messinger, B. G. Taketani, and F. K. Wilhelm, Left-handed superlattice metamaterials for circuit QED, Phys. Rev. A 99, 032325 (2019).
  30. X.-J. Wei and S.-C. Zhao, Left-handedness in the balanced/unbalanced resonance conditions of a quantized composite right-left handed transmission line, Eur. Phys. J. B 93, 81 (2020).
  31. I. Liberal and R. W. Ziolkowski, Nonperturbative decay dynamics in metamaterial waveguides, Appl. Phys. Lett. 118, 111103 (2021).
  32. Y. Wang and M. Lancaster, High-Temperature Superconducting Coplanar Left-handed Transmission Lines and Resonators, IEEE Trans. Appl. Supercond. 16, 1893 (2006).
  33. C. Du, H. Chen, and S. Li, Quantum left-handed metamaterial from superconducting quantum-interference devices, Phys. Rev. B 74, 113105 (2006).
  34. A. Alù and N. Engheta, Boosting Molecular Fluorescence with a Plasmonic Nanolauncher, Phys. Rev. Lett. 103, 043902 (2009).
  35. A. M. Mahmoud and N. Engheta, Wave–matter interactions in epsilon-and-mu-near-zero structures, Nat. Commun 5, 5638 (2014).
  36. A. Calzona and M. Carrega, Multi-mode architectures for noise-resilient superconducting qubits, Supercond. Sci. Technol. 36, 023001 (2022).
  37. A. Vaaranta, M. Cattaneo, and R. E. Lake, Dynamics of a dispersively coupled transmon qubit in the presence of a noise source embedded in the control line, Phys. Rev. A 106, 042605 (2022).
  38. P. Lodahl, S. Mahmoodian, and S. Stobbe, Interfacing single photons and single quantum dots with photonic nanostructures, Rev. Mod. Phys. 87, 347 (2015).
  39. I. Bialynicki-Birula and Z. Bialynicka-Birula, Rotational Frequency Shift, Phys. Rev. Lett. 78, 2539 (1997).
  40. F. Ghafoor, Autler–townes multiplet spectroscopy, Laser Phys. 24, 035702 (2014).
  41. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
  42. Observing the dynamics of photon bound states using a single quantum dot, Nat. Phys. 19, 785 (2023).
  43. A. González-Tudela and J. I. Cirac, Markovian and non-Markovian dynamics of quantum emitters coupled to two-dimensional structured reservoirs, Phys. Rev. A 96, 043811 (2017).
  44. A. C. Santos and R. Bachelard, Generation of Maximally Entangled Long-Lived States with Giant Atoms in a Waveguide, Phys. Rev. Lett. 130, 053601 (2023).
  45. E. Shahmoon and G. Kurizki, Nonradiative interaction and entanglement between distant atoms, Phys. Rev. A 87, 033831 (2013).
  46. D. F. James and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85, 625 (2007).
  47. J. R. Johansson, P. D. Nation, and F. Nori, Qutip: An open-source Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 183, 1760 (2012).
  48. J. R. Johansson, P. D. Nation, and F. Nori, Qutip 2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 184, 1234 (2013).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com