Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ramanujan's theta functions and internal congruences modulo arbitrary powers of $3$ (2309.06689v1)

Published 13 Sep 2023 in math.NT

Abstract: In this work, we investigate internal congruences modulo arbitrary powers of $3$ for two functions arising from Ramanujan's classical theta functions $\varphi(q)$ and $\psi(q)$. By letting \begin{align*} \sum_{n\ge 0} ph_3(n) qn:=\dfrac{\varphi(-q3)}{\varphi(-q)}\qquad\text{and}\qquad \sum_{n\ge 0} ps_3(n) qn:=\dfrac{\psi(q3)}{\psi(q)}, \end{align*} we prove that for any $m\ge 1$ and $n\ge 0$, \begin{align*} ph_3\big(3{2m-1}n\big)\equiv ph_3\big(3{2m+1}n\big)\pmod{3{m+2}}, \end{align*} and \begin{align*} ps_3{\left(3{2m-1}n+\frac{3{2m}-1}{4}\right)}\equiv ps_3{\left(3{2m+1}n+\frac{3{2m+2}-1}{4}\right)}\pmod{3{m+2}}, \end{align*} thereby substantially generalizing the previous results of Bharadwaj et al.~and Gireesh et al., respectively.

Summary

We haven't generated a summary for this paper yet.