Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computational Approaches for Predicting Drug-Disease Associations: A Comprehensive Review (2309.06388v1)

Published 10 Sep 2023 in q-bio.QM and cs.LG

Abstract: In recent decades, traditional drug research and development have been facing challenges such as high cost, long timelines, and high risks. To address these issues, many computational approaches have been suggested for predicting the relationship between drugs and diseases through drug repositioning, aiming to reduce the cost, development cycle, and risks associated with developing new drugs. Researchers have explored different computational methods to predict drug-disease associations, including drug side effects-disease associations, drug-target associations, and miRNAdisease associations. In this comprehensive review, we focus on recent advances in predicting drug-disease association methods for drug repositioning. We first categorize these methods into several groups, including neural network-based algorithms, matrixbased algorithms, recommendation algorithms, link-based reasoning algorithms, and text mining and semantic reasoning. Then, we compare the prediction performance of existing drug-disease association prediction algorithms. Lastly, we delve into the present challenges and future prospects concerning drug-disease associations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.