Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Reliable and Fluent Large Language Models: Incorporating Feedback Learning Loops in QA Systems (2309.06384v1)

Published 8 Sep 2023 in cs.CL and cs.AI

Abstract: LLMs have emerged as versatile tools in various daily applications. However, they are fraught with issues that undermine their utility and trustworthiness. These include the incorporation of erroneous references (citation), the generation of hallucinated information (correctness), and the inclusion of superfluous or omission of crucial details (fluency). To ameliorate these concerns, this study makes several key contributions. First, we build a dataset to train a critic model capable of evaluating the citation, correctness, and fluency of responses generated by LLMs in QA systems. Second, we propose an automated feedback mechanism that leverages the critic model to offer real-time feedback on heterogeneous aspects of generated text. Third, we introduce a feedback learning loop that uses this critic model to iteratively improve the performance of the LLM responsible for response generation. Experimental results demonstrate the efficacy of our approach, showing substantial improvements in citation and fluency metrics for ChatGPT, including a 4% precision increase in citation and an approximately 8% enhancement in the MAUVE metric for fluency, while maintaining high levels of correctness.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Dongyub Lee (9 papers)
  2. Taesun Whang (9 papers)
  3. Chanhee Lee (14 papers)
  4. Heuiseok Lim (49 papers)
Citations (6)