Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inspection planning under execution uncertainty (2309.06113v2)

Published 12 Sep 2023 in cs.RO

Abstract: Autonomous inspection tasks necessitate path-planning algorithms to efficiently gather observations from points of interest (POI). However, localization errors commonly encountered in urban environments can introduce execution uncertainty, posing challenges to successfully completing such tasks. Unfortunately, existing algorithms for inspection planning do not explicitly account for execution uncertainty, which can hinder their performance. To bridge this gap, we present IRIS-under uncertainty (IRIS-U2), the first inspection-planning algorithm that offers statistical guarantees regarding coverage, path length, and collision probability. Our approach builds upon IRIS -- our framework for deterministic inspection planning, which is highly efficient and provably asymptotically-optimal. The extension to the much more involved uncertain setting is achieved by a refined search procedure that estimates POI coverage probabilities using Monte Carlo (MC) sampling. The efficacy of IRIS-U2 is demonstrated through a case study focusing on structural inspections of bridges. Our approach exhibits improved expected coverage, reduced collision probability, and yields increasingly precise statistical guarantees as the number of MC samples grows. Furthermore, we demonstrate the potential advantages of computing bounded sub-optimal solutions to reduce computation time while maintaining statistical guarantees.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. A. Bircher, M. Kamel, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, and R. Siegwart, “Three-dimensional coverage path planning via viewpoint resampling and tour optimization for aerial robots,” Autonomous Robots, vol. 40, no. 6, pp. 1059–1078, 2016.
  2. B. McGuire, R. Atadero, C. Clevenger, and M. Ozbek, “Bridge information modeling for inspection and evaluation,” Journal of Bridge Engineering, vol. 21, no. 4, p. 04015076, 2016.
  3. B. Chan, H. Guan, J. Jo, and M. Blumenstein, “Towards UAV-based bridge inspection systems: A review and an application perspective,” Structural Monitoring and Maintenance, vol. 2, no. 3, pp. 283–300, 2015.
  4. M. Fu, A. Kuntz, O. Salzman, and R. Alterovitz, “Toward asymptotically-optimal inspection planning via efficient near-optimal graph search,” Robotics science and systems: online proceedings, vol. 2019, 2019.
  5. A. Bircher, K. Alexis, U. Schwesinger, S. Omari, M. Burri, and R. Siegwart, “An incremental sampling-based approach to inspection planning: the rapidly exploring random tree of trees,” Robotica, vol. 35, no. 6, pp. 1327–1340, 2017.
  6. Y. Sun, M. Liu, and M. Q.-H. Meng, “Wifi signal strength-based robot indoor localization,” in 2014 IEEE International Conference on Information and Automation (ICIA).   IEEE, 2014, pp. 250–256.
  7. M. E. Rida, F. Liu, Y. Jadi, A. A. A. Algawhari, and A. Askourih, “Indoor location position based on bluetooth signal strength,” in 2015 2nd International Conference on Information Science and Control Engineering.   IEEE, 2015, pp. 769–773.
  8. I. Klein, S. Filin, and T. Toledo, “Vehicle constraints enhancement for supporting ins navigation in urban environments,” NAVIGATION, Journal of the Institute of Navigation, vol. 58, no. 1, pp. 7–15, 2011.
  9. L. Janson, E. Schmerling, and M. Pavone, “Monte carlo motion planning for robot trajectory optimization under uncertainty,” in International Symposium of Robotics Research (ISRR), vol. 3.   Springer, 2015, pp. 343–361.
  10. N. A. Melchior and R. G. Simmons, “Particle RRT for path planning with uncertainty,” in International Conference on Robotics and Automation (ICRA), 2007, pp. 1617–1624.
  11. J. van den Berg, S. Patil, and R. Alterovitz, “Motion planning under uncertainty using iterative local optimization in belief space,” Int. J. Robotics Res., vol. 31, no. 11, pp. 1263–1278, 2012.
  12. M. Fu, A. Kuntz, O. Salzman, and R. Alterovitz, “Asymptotically optimal inspection planning via efficient near-optimal search on sampled roadmaps,” Int. J. Robotics Res., vol. 42, no. 4-5, pp. 150–175, 2023.
  13. C. Papachristos, M. Kamel, M. Popović, S. Khattak, A. Bircher, H. Oleynikova, T. Dang, F. Mascarich, K. Alexis, and R. Siegwart, “Autonomous exploration and inspection path planning for aerial robots using the robot operating system,” in Robot Operating System (ROS).   Springer, 2019, pp. 67–111.
  14. A. Hazra, “Using the confidence interval confidently,” Journal of thoracic disease, vol. 9, no. 10, p. 4125, 2017.
  15. R. Pepy and A. Lambert, “Safe path planning in an uncertain-configuration space using rrt,” in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2006, pp. 5376–5381.
  16. R. Alami and T. Simeon, “Planning robust motion strategies for a mobile robot,” in Proceedings of the 1994 IEEE International Conference on Robotics and Automation.   IEEE, 1994, pp. 1312–1318.
  17. S. Candido and S. Hutchinson, “Minimum uncertainty robot path planning using a pomdp approach,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2010, pp. 1408–1413.
  18. J.-A. Delamer, Y. Watanabe, and C. P. Carvalho Chanel, “Solving path planning problems in urban environments based on a priori sensors availabilities and execution error propagation,” in AIAA Scitech 2019 Forum, 2019, p. 2202.
  19. B. Englot, T. Shan, S. D. Bopardikar, and A. Speranzon, “Sampling-based min-max uncertainty path planning,” in 2016 IEEE 55th Conference on Decision and Control (CDC).   IEEE, 2016, pp. 6863–6870.
  20. A. Wu, T. Lew, K. Solovey, E. Schmerling, and M. Pavone, “Robust-rrt: Probabilistically-complete motion planning for uncertain nonlinear systems,” in International Foundation of Robotics Research, 2022.
  21. D. Zheng and P. Tsiotras, “Ibbt: Informed batch belief trees for motion planning under uncertainty,” arXiv preprint arXiv:2304.10984, 2023.
  22. Q. H. Ho, Z. N. Sunberg, and M. Lahijanian, “Gaussian belief trees for chance constrained asymptotically optimal motion planning,” in International Conference on Robotics and Automation.   IEEE, 2022, pp. 11 029–11 035.
  23. A. R. Pedram, R. Funada, and T. Tanaka, “Gaussian belief space path planning for minimum sensing navigation,” IEEE Trans. Robotics, vol. 39, no. 3, pp. 2040–2059, 2023.
  24. E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,” Robotics and Autonomous systems, vol. 61, no. 12, pp. 1258–1276, 2013.
  25. T. Danner and L. E. Kavraki, “Randomized planning for short inspection paths,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 2.   IEEE, 2000, pp. 971–976.
  26. B. Englot and F. Hover, “Inspection planning for sensor coverage of 3d marine structures,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2010, pp. 4412–4417.
  27. B. J. Englot and F. S. Hover, “Sampling-based coverage path planning for inspection of complex structures,” in Twenty-Second International Conference on Automated Planning and Scheduling, 2012.
  28. G. Papadopoulos, H. Kurniawati, and N. M. Patrikalakis, “Asymptotically optimal inspection planning using systems with differential constraints,” in 2013 IEEE International Conference on Robotics and Automation.   IEEE, 2013, pp. 4126–4133.
  29. A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Receding horizon path planning for 3d exploration and surface inspection,” Auton. Robots, vol. 42, no. 2, pp. 291–306, 2018.
  30. C. Papachristos, F. Mascarich, S. Khattak, T. Dang, and K. Alexis, “Localization uncertainty-aware autonomous exploration and mapping with aerial robots using receding horizon path-planning,” Auton. Robots, vol. 43, no. 8, pp. 2131–2161, 2019.
  31. J. N. Gross, Y. Gu, and M. B. Rhudy, “Robust uav relative navigation with dgps, ins, and peer-to-peer radio ranging,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 3, pp. 935–944, 2015.
  32. M. Khaghani and J. Skaloud, “Autonomous vehicle dynamic model-based navigation for small uavs,” NAVIGATION: Journal of the Institute of Navigation, vol. 63, no. 3, pp. 345–358, 2016.
  33. O. Salzman, “Sampling-based robot motion planning,” Commun. ACM, vol. 62, no. 10, pp. 54–63, 2019.
  34. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE Trans. Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
  35. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” Int. J. Robotics Research, vol. 30, no. 7, pp. 846–894, Jun. 2011.
  36. J. Neyman, “Outline of a theory of statistical estimation based on the classical theory of probability,” Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 236, no. 767, pp. 333–380, 1937.
  37. D. Habtzghi, C. Midha, and A. Das, “Modified clopper-pearson confidence interval for binomial proportion.” J. Stat. Theory Appl., vol. 13, no. 4, pp. 296–310, 2014.
  38. E. W. Weisstein, “Bonferroni correction,” https://mathworld. wolfram. com/, 2004.
  39. W.-L. Loh, “On latin hypercube sampling,” The annals of statistics, vol. 24, no. 5, pp. 2058–2080, 1996.
  40. L. Knüsel, “Computation of the chi-square and poisson distribution,” SIAM Journal on Scientific and Statistical Computing, vol. 7, no. 3, pp. 1022–1036, 1986.
  41. P. A. Games, “An improved t table for simultaneous control on g contrasts,” Journal of the American Statistical Association, vol. 72, no. 359, pp. 531–534, 1977.
  42. M. Grasmair, “Basic properties of convex functions,” Department of Mathematics, Norwegian University of Science and Technology, 2016.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com