Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive User-centered Neuro-symbolic Learning for Multimodal Interaction with Autonomous Systems (2309.05787v1)

Published 11 Sep 2023 in cs.AI, cs.HC, and cs.LG

Abstract: Recent advances in machine learning, particularly deep learning, have enabled autonomous systems to perceive and comprehend objects and their environments in a perceptual subsymbolic manner. These systems can now perform object detection, sensor data fusion, and language understanding tasks. However, there is a growing need to enhance these systems to understand objects and their environments more conceptually and symbolically. It is essential to consider both the explicit teaching provided by humans (e.g., describing a situation or explaining how to act) and the implicit teaching obtained by observing human behavior (e.g., through the system's sensors) to achieve this level of powerful artificial intelligence. Thus, the system must be designed with multimodal input and output capabilities to support implicit and explicit interaction models. In this position paper, we argue for considering both types of inputs, as well as human-in-the-loop and incremental learning techniques, for advancing the field of artificial intelligence and enabling autonomous systems to learn like humans. We propose several hypotheses and design guidelines and highlight a use case from related work to achieve this goal.

Summary

We haven't generated a summary for this paper yet.