Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CitDet: A Benchmark Dataset for Citrus Fruit Detection (2309.05645v3)

Published 11 Sep 2023 in cs.CV and cs.RO

Abstract: In this letter, we present a new dataset to advance the state of the art in detecting citrus fruit and accurately estimate yield on trees affected by the Huanglongbing (HLB) disease in orchard environments via imaging. Despite the fact that significant progress has been made in solving the fruit detection problem, the lack of publicly available datasets has complicated direct comparison of results. For instance, citrus detection has long been of interest to the agricultural research community, yet there is an absence of work, particularly involving public datasets of citrus affected by HLB. To address this issue, we enhance state-of-the-art object detection methods for use in typical orchard settings. Concretely, we provide high-resolution images of citrus trees located in an area known to be highly affected by HLB, along with high-quality bounding box annotations of citrus fruit. Fruit on both the trees and the ground are labeled to allow for identification of fruit location, which contributes to advancements in yield estimation and potential measure of HLB impact via fruit drop. The dataset consists of over 32,000 bounding box annotations for fruit instances contained in 579 high-resolution images. In summary, our contributions are the following: (i) we introduce a novel dataset along with baseline performance benchmarks on multiple contemporary object detection algorithms, (ii) we show the ability to accurately capture fruit location on tree or on ground, and finally (ii) we present a correlation of our results with yield estimations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. Y. Ding, W. S. Lee, and M. Li, “Feature extraction of hyperspectral images for detecting immature green citrus fruit,” Frontiers of Agricultural Science and Engineering, vol. 5, no. 4, pp. 475–484, 2018.
  2. J. Gené-Mola, E. Gregorio, J. Guevara, F. Auat, R. Sanz-Cortiella, A. Escolà, J. Llorens, J.-R. Morros, J. Ruiz-Hidalgo, V. Vilaplana, and J. R. Rosell-Polo, “Fruit detection in an apple orchard using a mobile terrestrial laser scanner,” Biosystems Engineering, vol. 187, pp. 171–184, 2019.
  3. H. Gan, W. S. Lee, V. Alchanatis, and A. Abd-Elrahman, “Active thermal imaging for immature citrus fruit detection,” Biosystems Engineering, vol. 198, pp. 291–303, 2020.
  4. Z. Wang, K. B. Walsh, and B. Verma, “On-tree mango fruit size estimation using rgb-d images,” Sensors, vol. 17, no. 12, p. 2738, 2017.
  5. G. Lin, Y. Tang, X. Zou, J. Li, and J. Xiong, “In-field citrus detection and localisation based on rgb-d image analysis,” Biosystems Engineering, vol. 186, pp. 34–44, 2019.
  6. A. Koirala, K. B. Walsh, Z. Wang, and C. McCarthy, “Deep learning - method overview and review of use for fruit detection and yield estimation,” Computers and Electronics in Agriculture, vol. 162, pp. 219–234, 2019.
  7. H. Teng, Y. Wang, X. Song, and K. Karydis, “Multimodal dataset for localization, mapping and crop monitoring in citrus tree farms,” in International Symposium on Visual Computing.   Springer, 2023, pp. 571–582.
  8. J. A. James, H. K. Manching, M. R. Mattia, K. D. Bowman, A. M. Hulse-Kemp, and W. J. Beksi, “CitDet,” 2024. [Online]. Available: https://doi.org/10.18738/T8/QFVHQ5
  9. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Proceedings of the European Conference on Computer Vision.   Springer, 2014, pp. 740–755.
  10. D. Miller, G. Goode, C. Bennie, P. Moghadam, and R. Jurdak, “Why object detectors fail: Investigating the influence of the dataset,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 4823–4830.
  11. S. Alvarez, E. Rohrig, D. Solís, and M. H. Thomas, “Citrus greening disease (huanglongbing) in florida: Economic impact, management and the potential for biological control,” Agricultural Research, vol. 5, pp. 109–118, 2016.
  12. W. Zhang, J. Wang, Y. Liu, K. Chen, H. Li, Y. Duan, W. Wu, Y. Shi, and W. Guo, “Deep-learning-based in-field citrus fruit detection and tracking,” Horticulture Research, vol. 9, 2022.
  13. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255.
  14. M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes (voc) challenge,” International Journal of Computer Vision, vol. 88, pp. 303–338, 2010.
  15. A. Gongal, S. Amatya, M. Karkee, Q. Zhang, and K. Lewis, “Sensors and systems for fruit detection and localization: A review,” Computers and Electronics in Agriculture, vol. 116, pp. 8–19, 2015.
  16. S. Bargoti and J. Underwood, “Deep fruit detection in orchards,” in Proceedings of the IEEE International Conference on Robotics and Automation, 2017, pp. 3626–3633.
  17. N. Häni, P. Roy, and V. Isler, “Minneapple: A benchmark dataset for apple detection and segmentation,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 852–858, 2020.
  18. X. Liu, S. W. Chen, S. Aditya, N. Sivakumar, S. Dcunha, C. Qu, C. J. Taylor, J. Das, and V. Kumar, “Robust fruit counting: Combining deep learning, tracking, and structure from motion,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018, pp. 1045–1052.
  19. H. Kang and C. Chen, “Fruit detection and segmentation for apple harvesting using visual sensor in orchards,” Sensors, vol. 19, no. 20, p. 4599, 2019.
  20. W. Jia, Z. Wang, Z. Zhang, X. Yang, S. Hou, and Y. Zheng, “A fast and efficient green apple object detection model based on foveabox,” Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 8, pp. 5156–5169, 2022.
  21. T. Kong, F. Sun, H. Liu, Y. Jiang, L. Li, and J. Shi, “Foveabox: Beyound anchor-based object detection,” IEEE Transactions on Image Processing, vol. 29, pp. 7389–7398, 2020.
  22. M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster training,” in International Conference on Machine Learning.   PMLR, 2021, pp. 10 096–10 106.
  23. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788.
  24. H. Mirhaji, M. Soleymani, A. Asakereh, and S. A. Mehdizadeh, “Fruit detection and load estimation of an orange orchard using the yolo models through simple approaches in different imaging and illumination conditions,” Computers and Electronics in Agriculture, vol. 191, p. 106533, 2021.
  25. C. Hou, X. Zhang, Y. Tang, J. Zhuang, Z. Tan, H. Huang, W. Chen, S. Wei, Y. He, and S. Luo, “Detection and localization of citrus fruit based on improved you only look once v5s and binocular vision in the orchard,” Frontiers in Plant Science, vol. 13, 2022.
  26. F. Wu, Z. Yang, X. Mo, Z. Wu, W. Tang, J. Duan, and X. Zou, “Detection and counting of banana bunches by integrating deep learning and classic image-processing algorithms,” Computers and Electronics in Agriculture, vol. 209, p. 107827, 2023.
  27. G. Jocher, “YOLOv5 by ultralytics,” 2020. [Online]. Available: https://github.com/ultralytics/yolov5
  28. H. Peng and S. Yu, “A systematic iou-related method: Beyond simplified regression for better localization,” IEEE Transactions on Image Processing, vol. 30, pp. 5032–5044, 2021.
  29. L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with atrous separable convolution for semantic image segmentation,” in Proceedings of the European Conference on Computer Vision, 2018, pp. 801–818.
  30. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” in Proceedings of the Advances in Neural Information Processing Systems, vol. 28, 2015.
  31. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017, pp. 2961–2969.
  32. P. Chu, Z. Li, K. Lammers, R. Lu, and X. Liu, “Deep learning-based apple detection using a suppression mask r-cnn,” Pattern Recognition Letters, vol. 147, pp. 206–211, 2021.
  33. Y. Tang, J. Qiu, Y. Zhang, D. Wu, Y. Cao, K. Zhao, and L. Zhu, “Optimization strategies of fruit detection to overcome the challenge of unstructured background in field orchard environment: A review,” Precision Agriculture, pp. 1–37, 2023.
  34. U.-O. Dorj, M. Lee, and S.-s. Yun, “An yield estimation in citrus orchards via fruit detection and counting using image processing,” Computers and Electronics in Agriculture, vol. 140, pp. 103–112, 2017.
  35. O. Apolo-Apolo, J. Martínez-Guanter, G. Egea, P. Raja, and M. Pérez-Ruiz, “Deep learning techniques for estimation of the yield and size of citrus fruits using a uav,” European Journal of Agronomy, vol. 115, p. 126030, 2020.
  36. S. K. Behera, A. K. Rath, and P. K. Sethy, “Fruits yield estimation using raster r-cnn with miou,” Multimedia Tools and Applications, vol. 80, pp. 19 043–19 056, 2021.
  37. A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.
  38. F. Gao, W. Fang, X. Sun, Z. Wu, G. Zhao, G. Li, R. Li, L. Fu, and Q. Zhang, “A novel apple fruit detection and counting methodology based on deep learning and trunk tracking in modern orchard,” Computers and Electronics in Agriculture, vol. 197, p. 107000, 2022.
  39. V. Vijayakumar, Y. Ampatzidis, and L. Costa, “Tree-level citrus yield prediction utilizing ground and aerial machine vision and machine learning,” Smart Agricultural Technology, vol. 3, p. 100077, 2023.
  40. H. Wang, Y. Lin, X. Xu, Z. Chen, Z. Wu, and Y. Tang, “A study on long-close distance coordination control strategy for litchi picking,” Agronomy, vol. 12, no. 7, p. 1520, 2022.
  41. M. Stein, S. Bargoti, and J. Underwood, “Image based mango fruit detection, localisation and yield estimation using multiple view geometry,” Sensors, vol. 16, no. 11, p. 1915, 2016.
  42. T. W. Rife and J. A. Poland, “Field book: An open-source application for field data collection on android,” Crop Science, vol. 54, no. 4, pp. 1624–1627, 2014.
  43. B. Dwyer, J. Nelson, and J. Solawetz, “Roboflow (version 1.0),” 2022. [Online]. Available: https://roboflow.com
  44. P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: A benchmark,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2009, pp. 304–311.
  45. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237, 2013.
  46. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
  47. C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” arXiv preprint arXiv:2207.02696, 2022.
  48. N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” in Proceedings of the European Conference on Computer Vision.   Springer, 2020, pp. 213–229.
  49. Y. Fang, B. Liao, X. Wang, J. Fang, J. Qi, R. Wu, J. Niu, and W. Liu, “You only look at one sequence: Rethinking transformer in vision through object detection,” in Proceedings of the Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 26 183–26 197.
  50. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” in Proceedings of the International Conference on Learning Representations, vol. 406, 2021, p. 407.
  51. H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Training data-efficient image transformers & distillation through attention,” in Proceedings of the International Conference on Machine Learning.   PMLR, 2021, pp. 10 347–10 357.
  52. D. Hoiem, Y. Chodpathumwan, and Q. Dai, “Diagnosing error in object detectors,” in Proceedings of the European Conference on Computer Vision, 2012, pp. 340–353.
Citations (3)

Summary

We haven't generated a summary for this paper yet.