Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Re-formalization of Individual Fairness (2309.05521v1)

Published 11 Sep 2023 in cs.LG, cs.CY, and cs.IR

Abstract: The notion of individual fairness is a formalization of an ethical principle, "Treating like cases alike," which has been argued such as by Aristotle. In a fairness-aware machine learning context, Dwork et al. firstly formalized the notion. In their formalization, a similar pair of data in an unfair space should be mapped to similar positions in a fair space. We propose to re-formalize individual fairness by the statistical independence conditioned by individuals. This re-formalization has the following merits. First, our formalization is compatible with that of Dwork et al. Second, our formalization enables to combine individual fairness with the fairness notion, equalized odds or sufficiency, as well as statistical parity. Third, though their formalization implicitly assumes a pre-process approach for making fair prediction, our formalization is applicable to an in-process or post-process approach.

Summary

We haven't generated a summary for this paper yet.