Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DoG-Instruct: Towards Premium Instruction-Tuning Data via Text-Grounded Instruction Wrapping (2309.05447v2)

Published 11 Sep 2023 in cs.CL

Abstract: The improvement of LLMs' instruction-following capabilities relies heavily on the availability of high-quality instruction-response pairs. Unfortunately, the current methods used to collect the pairs suffer from either unaffordable labor costs or severe hallucinations in the self-generation of LLM. To tackle these challenges, this paper proposes a scalable solution. It involves training LLMs to generate instruction-response pairs based on human-written documents, rather than relying solely on self-generation without context. Our proposed method not only exploits the advantages of human-written documents in reducing hallucinations but also utilizes an LLM to wrap the expression of documents, which enables us to bridge the gap between various document styles and the standard AI response. Experiments demonstrate that our method outperforms existing typical methods on multiple benchmarks. In particular, compared to the best-performing baseline, the LLM trained using our generated dataset exhibits a 10\% relative improvement in performance on AlpacaEval, despite utilizing only 1/5 of its training data. Furthermore, a comprehensive manual evaluation validates the quality of the data we generated. Our trained wrapper is publicly available at https://github.com/Bahuia/Dog-Instruct.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yongrui Chen (23 papers)
  2. Haiyun Jiang (34 papers)
  3. Xinting Huang (36 papers)
  4. Shuming Shi (126 papers)
  5. Guilin Qi (60 papers)
Citations (6)