Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Search Via Neural Contextual Semantic Relevance Ranking (2309.05113v1)

Published 10 Sep 2023 in cs.IR

Abstract: Existing neural relevance models do not give enough consideration for query and item context information which diversifies the search results to adapt for personal preference. To bridge this gap, this paper presents a neural learning framework to personalize document ranking results by leveraging the signals to capture how the document fits into users' context. In particular, it models the relationships between document content and user query context using both lexical representations and semantic embeddings such that the user's intent can be better understood by data enrichment of personalized query context information. Extensive experiments performed on the search dataset, demonstrate the effectiveness of the proposed method.

Summary

We haven't generated a summary for this paper yet.