Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Advantage Actor-Critic with Reasoner: Explaining the Agent's Behavior from an Exploratory Perspective (2309.04707v1)

Published 9 Sep 2023 in cs.AI and cs.LG

Abstract: Reinforcement learning (RL) is a powerful tool for solving complex decision-making problems, but its lack of transparency and interpretability has been a major challenge in domains where decisions have significant real-world consequences. In this paper, we propose a novel Advantage Actor-Critic with Reasoner (A2CR), which can be easily applied to Actor-Critic-based RL models and make them interpretable. A2CR consists of three interconnected networks: the Policy Network, the Value Network, and the Reasoner Network. By predefining and classifying the underlying purpose of the actor's actions, A2CR automatically generates a more comprehensive and interpretable paradigm for understanding the agent's decision-making process. It offers a range of functionalities such as purpose-based saliency, early failure detection, and model supervision, thereby promoting responsible and trustworthy RL. Evaluations conducted in action-rich Super Mario Bros environments yield intriguing findings: Reasoner-predicted label proportions decrease for Breakout" and increase forHovering" as the exploration level of the RL algorithm intensifies. Additionally, purpose-based saliencies are more focused and comprehensible.

Summary

We haven't generated a summary for this paper yet.