Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial-Temporal Graph Attention Fuser for Calibration in IoT Air Pollution Monitoring Systems (2309.04508v1)

Published 8 Sep 2023 in cs.LG, cs.AI, and eess.SP

Abstract: The use of Internet of Things (IoT) sensors for air pollution monitoring has significantly increased, resulting in the deployment of low-cost sensors. Despite this advancement, accurately calibrating these sensors in uncontrolled environmental conditions remains a challenge. To address this, we propose a novel approach that leverages graph neural networks, specifically the graph attention network module, to enhance the calibration process by fusing data from sensor arrays. Through our experiments, we demonstrate the effectiveness of our approach in significantly improving the calibration accuracy of sensors in IoT air pollution monitoring platforms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.