Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ground state solutions for quasilinear Schrodinger type equation involving anisotropic p-laplacian (2309.04457v2)

Published 8 Sep 2023 in math.AP

Abstract: This paper is concerned with the existence of a nonnegative ground state solution of the following quasilinear Schr\"{o}dinger equation \begin{equation*} \begin{split} -\Delta_{H,p}u+V(x)|u|{p-2}u-\Delta_{H,p}(|u|{2\alpha}) |u|{2\alpha-2}u=\lambda |u|{q-1}u \text{ in }\;Rn;\; u\in W{1,p}(\;Rn)\cap L\infty(\;RN) \end{split} \end{equation*} where $N\geq2$; $(\alpha,p)\in D_N={(x,y)\in \;R2 : 2xy\geq y+1,\; y\geq2x,\; y<N\}$ and $\lambda\>0$ is a parameter. The operator $\Delta_{H,p}$ is the reversible Finsler p-Laplacian operator with the function $H$ being the Minkowski norm on $\;RN$. Under certain conditions on $V$, we establish the existence of a non-trivial non-negative bounded ground state solution of the above equation.

Summary

We haven't generated a summary for this paper yet.